Skip to main content
Log in

Preparation of dandelion-type silica spheres and their application as catalyst supports

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Dandelion-type silica spheres with a dendrimer-like porous structure were prepared by adding pore modifiers into aqueous synthetic mixtures of tetraethylorthosilicate (TEOS), hexadecyltrimethylammonium bromide (CTAB), ammonium hydroxide, and acetone. The formation of silica spheres and their porous characteristics were investigated using various techniques, including electron microscopy, nitrogen adsorption, and thermogravimetric analysis. Benzyl acetate (BENA) was very effective in the formation of a dendrimer-like porous structure. However, the composition of TEOS, CTAB, acetone, and BENA strongly influenced the size and shape of the silica spheres and their porous structure. The synthetic mixture of 1 TEOS: 0.22 CTAB: 1.9 BENA: 0.32 NH4OH: 36 acetone: 236 H2O produced dandelion-type silica spheres with diameters of ~300 nm. The phosphazenium hydroxide (PzOH) catalyst supported on the dandelion-type silica spheres prepared by adding BENA showed high catalytic performance in the transesterification of soybean oil with methanol due to its high feasibility for rapid access of large triglyceride molecules into the basic PzOH moieties incorporated in the pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10

Similar content being viewed by others

References

  1. F. Caruso, Colloids and Colloid Assemblies-Synthesis, Modification, Organization and Utilization of Colloid Particles, 1st edn. (Wiley-VCH, Weinheim, 2003), pp. 150–168

    Book  Google Scholar 

  2. T. Nakamura, Y. Yamada, K. Yano, J. Mater. Chem. 16, 2417 (2006)

    Article  CAS  Google Scholar 

  3. C. Boissiére, M. Kümmel, M. Persin, A. Larbot, E. Prouzet, Adv. Funct. Mater. 11, 129 (2001)

    Article  Google Scholar 

  4. B. Ye, Y. Li, F. Qiu, C. Sun, Z. Zhao, T. Ma, D. Yang, Korean J. Chem. Eng. 30(7), 1395 (2013)

    Article  CAS  Google Scholar 

  5. Z. Shiri-Yekta, M.R. Yaftian, A. Nilchi, Korean J. Chem. Eng. 30(8), 1644 (2013)

    Article  CAS  Google Scholar 

  6. F. Schüth, Chem. Mater. 13, 3184 (2001)

    Article  Google Scholar 

  7. W. Stober, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62 (1968)

    Article  Google Scholar 

  8. L.L. Hench, J.K. West, Chem. Rev. 90, 33 (1990)

    Article  CAS  Google Scholar 

  9. M. Grün, I. Lauer, K.K. Unger, Adv. Mater. 9, 254 (1997)

    Article  Google Scholar 

  10. M. Mizutani, Y. Yamada, T. Nakamura, K. Yano, Chem. Mater. 20, 4777 (2008)

    Article  CAS  Google Scholar 

  11. K.-C. Kao, C.-Y. Mou, Microporous Mesoporous Mater. 169, 7 (2013)

    Article  CAS  Google Scholar 

  12. J. Zhang, M. Liu, A. Zhang, K. Lin, C. Song, X. Guo, Solid State Sci. 12, 267 (2010)

    Article  CAS  Google Scholar 

  13. J. Zhang, M. Liu, C. Song, X. Guo, Microporous Mesoporous Mater. 139, 31 (2011)

    Article  CAS  Google Scholar 

  14. M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Acta Biomater. 9, 7591 (2013)

    Article  CAS  Google Scholar 

  15. D.S. Park, D. Yun, Y. Choi, T.Y. Kim, S. Oh, J.-H. Cho, J. Yi, Chem. Eng. J. 228, 889 (2013)

    Article  CAS  Google Scholar 

  16. D.-S. Moon, J.-K. Lee, Langmuir 28, 12341 (2012)

    Article  CAS  Google Scholar 

  17. A.B.D. Nandiyanto, S.-G. Kim, F. Iskandar, K. Okuyama, Microporous Mesoporous Mater. 120, 447 (2009)

    Article  CAS  Google Scholar 

  18. V. Polshettiwar, D. Cha, X. Zhang, J.M. Basset, Angew. Chem. 122, 9846 (2010)

    Article  Google Scholar 

  19. J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed. 38, 56 (1999)

    Article  CAS  Google Scholar 

  20. V. Meynen, P. Cool, E.F. Vansant, Microporous Mesoporous Mater. 125, 170 (2009)

    Article  CAS  Google Scholar 

  21. M.-Y. Kim, G. Seo, O.Z. Kwon, D.R. Chang, Chem. Commun. 21, 3110 (2009)

    Article  CAS  Google Scholar 

  22. J.-K. Yang, M.-S. Choi, W.-T. Seo, D.L. Rinker, S.W. Han, G.-W. Cheong, Fitoterapia 78, 149 (2007)

    Article  CAS  Google Scholar 

  23. T. Takei, K. Kato, A. Meguro, M. Chikazawa, Colloids Surf. A Physicochem. Eng. Asp. 150, 77 (1999)

    Article  CAS  Google Scholar 

  24. D.L. Pavia, G.M. Lampman, G.S. Kriz, J.A. Vyvyan, Introduction to Spectroscopy, 4th edn. (Cengage Learning, Boston, 2010), pp. 43–94

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2009-0094055). TEM photos of the dandelion-type silica spheres were obtained from the Korea Basic Science Institute, Gwangju Branch. One of the authors (G. Seo) greatly appreciates Dr. J.J. Yun (Nano Bio Research Center of Jeonnam) for the supply of phytoncide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gon Seo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S.W., Jang, HG., Sim, HI. et al. Preparation of dandelion-type silica spheres and their application as catalyst supports. J Porous Mater 21, 797–809 (2014). https://doi.org/10.1007/s10934-014-9828-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9828-1

Keywords

Navigation