Skip to main content
Log in

Preparation and characterization of equimolar SiO2–Al2O3–TiO2 ternary aerogel beads

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Crack-free mesoporous equimolar SiO2–Al2O3–TiO2 ternary aerogel beads have been synthesized and characterized. Silica sol, alumina sol, and titania sol were synthesized individually to prevent the formation of inhomogeneous structure due to the different hydrolization and polymerization rate of individual precursor. After mixing these three types of acidic sols, SiO2–Al2O3–TiO2 ternary beads were prepared by the ball dropping method. The ternary aerogel beads were typically mesoporous, showing high surface area (305 m2 g−1), large pore volume (1.32 cm3 g−1), and high surface acid amount (0.884 mmol NH3 g−1). Moreover, the acid sites of the ternary aerogel beads showed higher thermal stability than those of binary aerogel beads. Gradient drying (GD), supercritical drying (SD), ambient drying (AD), extended aging (EA) and hydrophobic modifying drying (HM) have been employed to investigate the effects of drying method on the characteristics of the aerogel beads. The surface areas of the ternary aerogel beads obtained by different drying methods decrease in the sequence EA > HM > GD > SD > AD. The ternary aerogel beads have been characterized by scanning electron microscopy, nitrogen adsorption, X-ray powder diffraction, Fourier-transform infrared spectroscopy (FTIR), solid-state NMR, temperature-programmed desorption measurements, pyridine adsorption FTIR, and differential scanning calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Pajonk, T. Manzalji, Catal. Lett. 21, 361 (1993)

    Article  CAS  Google Scholar 

  2. F. Blanchard, J. Reymond, B. Pommier, S. Teichner, J. Mol. Catal. 17, 171 (1982)

    Article  CAS  Google Scholar 

  3. C. Hoang-Van, B. Pommier, R. Harivololona, P. Pichat, J. Non-Cryst, Solids 145, 250 (1992)

    CAS  Google Scholar 

  4. N. Al-Yassir, R. Le Van Mao, Appl. Catal. A 317, 275 (2007)

    Article  CAS  Google Scholar 

  5. H. Zou, Y. Lin, Appl. Catal. A 265, 35 (2004)

    Article  CAS  Google Scholar 

  6. K.N. Allam, N.M. Deyab, N.A. Ghany, Phys. Chem. Chem. Phys. 15, 12274 (2013)

    Article  CAS  Google Scholar 

  7. Y. Chen, D. Liua, L. Yang, M. Meng, J. Zhang, L. Zheng, S. Chu, H. Tiandou, Chem. Eng. J. 234, 88 (2013)

    Article  CAS  Google Scholar 

  8. R. Carrera Cerritos, R. Fuentes Ramírez, A.F. Aguilera Alvarado, J.M. Martínez Rosales, T. Viveros García, I.R. Galindo Esquivel, Ind. Eng. Chem. Res. 50, 2576 (2010)

    Article  Google Scholar 

  9. Z. Xu, Y. Li, J. Zhang, L. Chang, R. Zhou, Z. Duan, Appl. Catal. A 213, 65 (2001)

    Article  CAS  Google Scholar 

  10. B.E. Yoldas, Am. Ceram. Soc. Bull. 54, 286 (1975)

    CAS  Google Scholar 

  11. H. Ichinose, H. Katsuki, J. Ceram. Soc. Jpn. 107, 73 (1999)

    Article  CAS  Google Scholar 

  12. S.W. Hwang, T.Y. Kim, S.H. Hyun, J. Colloid Interface Sci. 322, 224 (2008)

    Article  CAS  Google Scholar 

  13. S. Smitha, P. Shajesh, P. Aravind, S.R. Kumar, P.K. Pillai, K. Warrier, Microporous Mesoporous Mater. 91, 286 (2006)

    Article  CAS  Google Scholar 

  14. C. Morterra, G. Cerrato, Langmuir 6, 1810–1812 (1990)

    Article  CAS  Google Scholar 

  15. E. Parry, J. Catal. 2, 371–379 (1963)

    Article  CAS  Google Scholar 

  16. A. Corma, V. Fornes, E. Ortega, J. Catal. 92, 284–290 (1985)

    Article  CAS  Google Scholar 

  17. S. Keysar, G.E. Shter, Y. de Hazan, Y. Cohen, G.S. Grader, Chem. Mater. 9, 2464 (1997)

    Article  CAS  Google Scholar 

  18. G. Engelhardt, D. Michel, High-resolution solid-state NMR of silicates and zeolites (1987)

  19. F. Gaboriaud, A. Nonat, D. Chaumont, A. Craievich, J. Phys. Chem. B 103, 5775 (1999)

    Article  CAS  Google Scholar 

  20. M. Schmücker, H. Schneider, Ber. Bunsen Ges. Phys. Chem 100, 1550 (1996)

    Article  Google Scholar 

  21. A. Thangaraj, R. Kumar, S. Mirajkar, P. Ratnasamy, J. Catal. 130, 1 (1991)

    Article  CAS  Google Scholar 

  22. B. De Witte, P. Grobet, J. Uytterhoeven, J. Phys. Chem. 99, 6961 (1995)

    Article  Google Scholar 

  23. S. Gregg, K. Sing, Adsorption Surface Area and Porosity (Academic, New York, 1982)

    Google Scholar 

  24. G.W. Scherer, J. Non-Cryst, Solids 147, 363 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guotong Qin or Yatao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Qin, G., Wang, Y. et al. Preparation and characterization of equimolar SiO2–Al2O3–TiO2 ternary aerogel beads. J Porous Mater 21, 611–621 (2014). https://doi.org/10.1007/s10934-014-9807-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9807-6

Keywords

Navigation