Skip to main content

Advertisement

Log in

Physical and mechanical properties of materials prepared using Class C fly ash and soybean oil

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In present work; epoxidized soybean oil (ESO), fly ash (FA) and natural clay (C) are used to produce 45 kinds of biocomposite materials and by analyzing the physical–mechanical properties of these novel materials, their use as an insulation material is investigated. The compressive strength, tensile strength, abrasion loss, thermal conductivity and oven-dry mass of each sample are measured. The minimum thermal conductivity of 0.273 W/mK is observed with the samples containing ESO–FA–C. It is increased with the decrease of ESO and FA. The compressive and tensile strengths are varied from 13.53 to 6.31 MPa and 1.287 to 0.879 MPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ESO:

Epoxidized soybean oil

SO:

Soybean oil

FA:

Fly ash

K :

Constant of Shoterm QTM apparatus

H :

Constant of Shoterm QTM apparatus

t 1 :

Temperature of startup (K)

t 2 :

Temperature of finish (K)

V 1 :

The startup voltages of thermoelement (mV)

V 2 :

The finish voltages of thermoelement (mV)

k :

Thermal conductivity coefficient (W/mK)

T avr :

Average temperature (K)

I :

Current density in heater wire (A)

References

  1. E.H. Pryde, Handbook of Soy Oil Processing and Utilization (American Oil Chemists Society, Champaign, IL, 1990)

    Google Scholar 

  2. C.S. Nevin, B.F. Moser, Vinyl oil monomers. I. Vicinal methacryloxy–hydroxy soy oils. J. Appl. Polym. Sci. 7, 1853–1866 (1963)

    Article  Google Scholar 

  3. F. Mustata, Rheological and thermal behaviour of an epoxy resin modified with reactive diluents. J. Polym. Eng. 17, 491–506 (1997)

    CAS  Google Scholar 

  4. F.S. Güner, Y. Yağcı, A.T. Erciyes, Polymers from triglyceride oils. Prog. Polym. Sci. 31, 633–670 (2006)

    Article  Google Scholar 

  5. S.N. Khot, J.J. Lascala, E. Can, S.S. Morye, G.I. Williams, G.R. Palmese, Development and application of triglyceride-based polymers and composites. J. Appl. Polym. Sci. 82(3), 703–723 (2001)

    Article  CAS  Google Scholar 

  6. V. Sharma, P.P. Kundu, Addition polymers from natural oils—a review. Prog. Polym. Sci. 31, 983–1008 (2006)

    Article  CAS  Google Scholar 

  7. F.D. Gunstone, Chemistry and Biochemistry of Fatty Acids and Their Glycerides (Chapman and Hall, London, 1967)

  8. A.B. Strong, Molecular design advances in resin chemistry, in Compos Fabrication (1998), pp. 1218–1224

  9. I. Frischinger, S. Dirlikov, Two-phase epoxy thermosets that contain epoxidized triglyceride oils. Polym. Mat. Sci. Eng. 69, 390–391 (1993)

    CAS  Google Scholar 

  10. S. Dirlikov, I. Frischinger, Z. Chen, Phase separation of two-phase epoxy thermosets that contain epoxidized triglyceride oils, in Toughened Plastics II: Novel Approaches in Science and Engineering, Advances in Chemistry Series, vol. 252 (1996), p. 95

  11. H. Warth, R. Mulhaupt, B. Hoffman, S. Lawson, Polyester networks based upon epoxidized and maleinated natural oils. Angew. Makromol. Chem. 79, 249 (1997)

    Google Scholar 

  12. J.V. Crivello, R. Narayan, Epoxidized triglycerides as renewable monomers in photoinitiated cationic polymerization. Chem. Mater. 4, 692 (1992)

    Google Scholar 

  13. F. Gunstone, Fatty Acid & Lipid Chemistry (Blackie Academic & Professional, New York, 1996)

    Google Scholar 

  14. C.G. Force, F.S. Star, Vegetable oil adducts as emollients in skin and hair care products, US Patent 4740367 (4), 1988, p. 367

    Google Scholar 

  15. S.V. Vassileva, C.G. Vassilevaa, A.I. Karayigit, Y. Bulut, A. Alastueyc, X. Querolc, Phase mineral and chemical composition of composite samples from feed coals, bottom ashes and fly ashes at the Soma power station. Int. J. Coal Geol. Turkey 61, 35–63 (2005)

    Google Scholar 

  16. V. Tiwari, A. Shukla, A. Bose, Acoustic properties of cenosphere reinforced cement and asphalt concrete. Appl. Acoust. 65, 263–275 (2004)

    Article  Google Scholar 

  17. R.K.Y. Li, J.Z. Liang, S.C. Tjong, Morphology and dynamic mechanical properties of glass beads filled low density polyethylene composites. Mater. Process. Technol. 79, 59–65 (1998)

    Google Scholar 

  18. M. Singh, M. Garg, Cementitious binder from fly ash and other industrial wastes. Cem. Concr. Res. 29, 309–314 (1999)

    Article  CAS  Google Scholar 

  19. Z. Liu, S.Z. Erhan, J. Xu, Preparation, characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites. Polymer 46, 10119–10127 (2005)

    Google Scholar 

  20. E. Murad, T. Wagner, The firing process. Hyperfine interactions. Clay Clay Miner. 117, 337–356 (1998)

    CAS  Google Scholar 

  21. D. Alkaya, G. İmançlı, Uçucu Kül katkısının Dolgu zeminlerin stabilitesine Etkisi ve Uçucu Küllerin Zemin İyileştirmede Kullanılması, Pamukkale Üniversitesi, Proje No: 2001FBE036 Denizli (2002)

  22. S. Denko, Shotherm Operation Manual No: 125-2.K.K. Instrument Products Department, 13-9 Shiba Daimon, Tokyo 105, Japan

  23. Y. Biçer, Termik Santral Uçucu Küllerinin Değişik Bağlayıcı Kombinasyonlarda Isı İletim Özelliklerinin Analizi ve Değerlendirilmesi. Doktora Tezi. FÜ Fen Bilimleri Enstitüsü, Elazığ, 1990

  24. L. Mbumbia, A.M. De Wilmars, J. Tirlocq, Performance characteristics of lateritic soil bricks fired at low temperatures: a case study of Cameroon. Constr. Build Mater. 14, 121–131 (2000)

    Google Scholar 

  25. W.J. McBurney, The effect of strength of brick on compressive strength of brick masonry. Process ASTM (Part II) 28 (1970)

  26. G.C.J. Lynch, Brick: properties and classifications. Struct. Survey 12(4), 15–20 (1993)

    Article  Google Scholar 

  27. R. Siddique, Effect of fine aggregate replacement with Class F fly ash on the abrasion resistance of concrete. Cem. Concr Res. 33(11), 1877–1881 (2003)

    Article  CAS  Google Scholar 

  28. E. Horszczaruk, Abrasion resistance of high-strength concrete in hydraulic structures. Wear 259(1), 62–69 (2005)

    Article  CAS  Google Scholar 

  29. I. Yüksel, Ö. Özkan, T. Bilir, Use of granulated blast-furnace slag in concrete as fine aggregate. ACI Mater. J. 103(3), 203–208 (2006)

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support from the Scientific Research Projects Administration Unit of Firat University (Elazığ, Turkey) for this study (project number: 1245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Figen Balo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balo, F., Yucel, H.L. & Ucar, A. Physical and mechanical properties of materials prepared using Class C fly ash and soybean oil. J Porous Mater 17, 553–564 (2010). https://doi.org/10.1007/s10934-009-9324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-009-9324-1

Keywords

Navigation