Skip to main content

Advertisement

Log in

Acid-volatile sulfide and acid-extractable iron sediment profiles do not track changes in lake trophic status and atmospheric sulfur deposition

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Sulfide formation in anaerobic lake sediments depends on supply rates of organic carbon and sulfate. Improvements to wastewater treatment plant effluent quality (e.g., lower total phosphorus (P)) and sulfur emissions can affect sulfide formation rates, which, in turn, can affect metal chemistry including internal iron loading. To determine if these improvements corresponded with sulfide and iron-related signals in sediments over time, acid-volatile sulfide (AVS) and acid-extractable iron accumulation rates were measured in sediment cores of two lakes with anaerobic hypolimnia, the formerly eutrophic, now mesotrophic central basin of Lake Erie, one of the Laurentian Great Lakes, and a small meso-eutrophic moraine lake in southern Ontario, Lake St. George. AVS accumulation rates declined gradually in both lakes after 1980 by 95% and 57%, respectively. Acid-extractable iron accumulation rate profiles were similar to AVS in both lakes, but acid-extractable iron rates were several orders of magnitude larger than AVS rates, hence most of the iron was not chemically associated with AVS. In contrast to the gradual declines in AVS, total P loading to Lake Erie did not decline much after 1980, total P concentrations in Lake St. George remained relatively constant between 1980 and 2014, and sulfate concentration decreases were too small in both lakes to account for the large AVS declines after 1980. Hence, productivity and sulfur emission signals appear to have been overridden by diagenetic processes, which produced similar profiles. Therefore, AVS and acid-extractable iron do not appear to be useful as paleo-indicators of trophic status and sulfate deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aas W, Mortier A, Bowersox V, Cherian R, Faluvegi G, Fagerli H, Hand J, Klimont Z, Galy-Lacaux C, Lehmann CMB, Lund Myhre C, Myhre G, Olivié D, Sato K, Quaas J, Rao PSP, Schulz M, Shindell D, Skeie RB, Stein A, Takemura T, Tsyro S, Vet R, Xu X (2019) Global and regional trends of atmospheric sulfur. Sci Rep 9:953. https://doi.org/10.1038/s41598-018-37304-0

    Article  Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8

    Article  Google Scholar 

  • Appleby PG, Oldfield F (1983) The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103:29–35

    Article  Google Scholar 

  • Azcue JM, Rosa F, Mudroch A (1996) Distribution of major and minor elements in sediments and pore water of Lake Erie. J Great Lakes Res 22:389–402

    Article  Google Scholar 

  • Baustian MM, Brooks YM, Baskaran M, Leavitt PR, Liu B, Ostrom N, Stevenson RJ, Rose JB (2020) Paleo-environmental evidence of ecosystem change in Lake St. Clair region of Laurentian Great Lakes basin: contrasting responses to land-use change and invasive mussels. J Paleolimnol 63:177–193

    Article  Google Scholar 

  • Bédard C, Knowles R (1997) Some properties of methane oxidation in a thermally stratified lake. Can J Fish Aquat Sci 54:1639–1645

    Article  Google Scholar 

  • Bertram PE (1992) Total phosphorus and dissolved oxygen trends in the central basin of Lake Erie, 1970–1991. J Great Lakes Res 19:224–236

  • Brouwer H, Murphy TP (1994) Diffusion method for the determination of acid-volatile sulfides (AVS) in sediment. Environ Toxicol Chem 13:1273–1275

    Article  Google Scholar 

  • Canavan RW, van Cappelen P, Zwolsman JJG, van den Berg GA, Slomp CP (2007) Geochemistry of trace metals in a fresh water sediment: field results and diagenetic modeling. Sci Tot Environ 381:263–279

    Article  Google Scholar 

  • Carignan R, Tessier A (1988) The co-diagenesis of sulfur and iron in acid lake sediments of southwestern Québec. Geochim Cosmochim Acta 52:1179–1188

    Article  Google Scholar 

  • Chapra SC, Dove A, Warren GJ (2012) Long-term trends of Great Lakes major ion chemistry. J Great Lakes Res 38:550–560

    Article  Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    Article  Google Scholar 

  • Couture R-M, Fischer R, van Cappellen P, Gobeil C (2016) Non-steady state diagenesis of organic and inorganic sulfur in lake sediments. Geochim Cosmochim Acta 194:15–33

    Article  Google Scholar 

  • Crusius J, Anderson RF (1991) Core compression and surficial sediment loss of lake sediments of high porosity caused by gravity coring. Limnol Oceanogr 36:1021–1031

    Article  Google Scholar 

  • Dolan DM (1993) Point source loadings of phosphorus to Lake Erie: 1986–1990. J Great Lakes Res 19:212–223

    Article  Google Scholar 

  • Dove A, Chapra SC (2015) Long-term trends of nutrients and trophic response variables for the Great Lakes. Limnol Oceanog 60:696–721

    Article  Google Scholar 

  • Eimers CM, Dillon PJ, Watmaugh SA (2004) Long-term (18-year) changes in sulphate concentrations in two Ontario headwater lakes and their inflows in response to decreasing deposition and climate variations. Hydrol Process 18:2617–2630

    Article  Google Scholar 

  • Evans JC, Prepas EE (1997) Relative importance of iron and molybdenum in restricting phytoplankton biomass in high phosphorus saline lakes. Limnol Oceanogr 42:461–472

    Article  Google Scholar 

  • Feng J, Vet R, Cole A, Zhang L, Cheng I, O’Brien J, Macdonald A-M (2021) Inorganic chemical components in precipitation in the eastern US and Eastern Canada during 1989–2016: temporal and regional trends of wet concentration and wet deposition from the NADP and CAPMoN measurements. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2021.118367

    Article  Google Scholar 

  • Gleyzes C, Tellier S, Astruc M (2002) Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal Chem 21:451–467

    Article  Google Scholar 

  • Government of Ontario (2021) Acid deposition. Indicator trends available from https://www.ontario.ca/page/acid-deposition

  • He J, Lu C, Fan Q, Xue H, Bao J (2011) Distribution of AVS-SEM, transformation mechanism and risk assessment of heavy metals in the Nanhai Lake in China. Environ Earth Sci 64:2025–2037

    Article  Google Scholar 

  • Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Fresh Wat Biol 46:431–451

    Article  Google Scholar 

  • Howard DE, Evans RD (1993) Acid-volatile sulfide (AVS) in a seasonally anoxic mesotrophic lake: seasonal and spatial changes in sediment AVS. Environ Toxicol Chem 12:1051–1057. https://doi.org/10.1002/etc.5620120611

    Article  Google Scholar 

  • Jeppesen E, Sondergaard M, Jensen J, Havens K, Anneville O, Carvalho L, Coveney M, Deneke R, Dokulil M, Foy B, Gerdeaux D, Hampton S, Hilt S, Kangur K, Kohler J, Lammens E, Lauridsen T, Manca M, Miracle M, Moss B, Noges P, Persson G, Phillips G, Portielje R, Schelske C, Straile D, Tatrai I, Willen E, Winder M (2005) Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshwat Biol 50:1747–1771. https://doi.org/10.1111/j.1365-2427.2005.01415.x

    Article  Google Scholar 

  • Jia J, Yang Y, Cai T, Gao J, Xa X, Li Y, Gao S (2008) On the sediment age estimated by 210Pb dating: probably misleading “prolonging” and multiple-factor-caused “loss.” Acta Oceanol Sin 37:30–39. https://doi.org/10.1007/s13131-018-1214-4

    Article  Google Scholar 

  • Kemp ALW, Anderson TW, Thomas RL, Mudrochova A (1974) Sedimentation rates and recent sediment history of Lakes Ontario, Erie and Huron. J Sediment Petrol 44:207–218

    Google Scholar 

  • Kemp ALW, MacInnis GA, Harper NS (1977) Sedimentation rates and a revised sediment budget for Lake Erie. J Great Lakes Res 3:221–233

    Article  Google Scholar 

  • Klerks PL, Fraleigh PC, Lawniczak JE (1996) Effects of zebra mussel (Dreissena polymorpha) on seston levels and sediment deposition in western Lake Erie. Can J Fish Aquat Sci 53:2284–2291

    Article  Google Scholar 

  • Lafontaine N, McQueen DJ (1990) Contrasting trophic level interactions in Lake St. George and Haynes Lake (Ontario, Canada). Can J Fish Aquat Sci 48:356–363

    Article  Google Scholar 

  • Leonard EN, Mattson VR, Benoit DA, Hoke RA, Ankley GT (1993) Seasonal variation of acid volatile sulfide concentration in sediment cores from three northeastern Minnesota lakes. Hydrobiologia 271:87–95

    Article  Google Scholar 

  • Lesven L, Gaob Y, Billona G, Leermakersb M, Ouddanea B, Fischera J-C, Baeyensb W (2008) Early diagenetic processes aspects controlling the mobility of dissolved trace metals in three riverine sediment columns. Sci Tot Environ 407:447–459

    Article  Google Scholar 

  • Lukkari K, Hartikainen H, Leivuori M (2007) Fractionation of sediment phosphorus revisited. I: fractionation steps and their biogeochemical basis. Limnol Oceanogr Methods 5:433–444

    Article  Google Scholar 

  • Maccoux MJ, Dove A, Backus SM, Dolan DM (2016) Total and soluble reactive phosphorus loadings to Lake Erie. A detailed accounting by year, basin, country, and tributary. J Great Lakes Res 42:1151–1165

    Article  Google Scholar 

  • McQueen DJ, Lean DRS (1987) Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue–green algae in Lake St. George. Ontario Can J Fish Aquat Sci 44:598–604

    Article  Google Scholar 

  • McQueen DJ, Mills EL, Forney JL, Johannes MRS, Post JR (1992) Trophic level relationships in pelagic food webs: comparisons derived from long-term data sets for Oneida lake, New York (USA) and Lake St. George, Ontario (Canada). Can J Fish Aquat Sci 49:1588–1596

    Article  Google Scholar 

  • Molot LA, Miller SA, Dillon PJ, Trick CG (2003) A simple method for assaying extracellular hydroxyl radical activity and its application to natural and synthetic waters. Can J Fish Aquat Sci 60:203–213

    Article  Google Scholar 

  • Morse JW, Luther GW III (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim Cosmochim Acta 63:3373–3378

    Article  Google Scholar 

  • Morse JW, Millero FJ, Cornwell JC, Rickard D (1987) The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth Sci Rev 24:1–42

    Article  Google Scholar 

  • Murray TE (1995) The correlation between iron sulfide precipitation and hypolimnetic phosphorus accumulation during one summer in a softwater lake. Can J Fish Aquat Sci 52:1190–1194

    Article  Google Scholar 

  • Naylor C, Davison W, Motelica-Heino M, van Den Berg GA, van Der Heijdt LM (2006) Potential kinetic availability of metals in sulphidic freshwater sediments. Sci Tot Environ 357:208–220

    Article  Google Scholar 

  • Norton SA, Coolidge K, Amirbahman A, Bouchard R, Kopáčeke J, Reinhardt R (2008) Fractionation of sediment phosphorus revisited. I: fractionation steps and their biogeochemical basis. Limnol Oceanogr Methods 5:433–444

    Google Scholar 

  • Nriagu J, Kemp ALW, Wong HKT, Harper N (1979) Sedimentary record of heavy metal pollution in Lake Erie. Geochim Cosmochim Acta 43:247–258

    Article  Google Scholar 

  • Nriagu J (1975) Sulphur isotopic variations in relation to sulphur pollution of Lake Erie. In: Symposium on isotope ratios as pollutant source and behaviour indicators. International Atomic Energy Agency, Vienna, Austria, 18–22 November 1974, Proceedings Series, pp 77–93

  • Nürnberg GK (1995) Quantifying anoxia in lakes. Limnol Oceanogr 40:1100–1111

    Article  Google Scholar 

  • Psenner R, Pucsko R (1988) Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Arch Hydrobiol Beih Ergebn 30:43–59

    Google Scholar 

  • Rickard D, Morse JW (2005) Acid volatile sulfide (AVS). Mar Chem 97:141–197

    Article  Google Scholar 

  • Ritson PI, Esser BK, Niemeyer S, Flegal AR (1994) Lead isotopic dissemination of historical sources of lead to Lake Erie, North America. Geochim Cosmochim Acta 58:3297–3305

    Article  Google Scholar 

  • Scavia D, Allan JD, Arend KK, Bartell S, Beletsky D, Bosch NS, Brandt SB, Briland RD, Daloğlu I, DePinto JV, Dolan DM (2014) Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia. J Great Lakes Res 40:226–246

    Article  Google Scholar 

  • Schindler DW (2012) The dilemma of controlling cultural eutrophication. Proc R Soc B 279:4322–4333

    Article  Google Scholar 

  • Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116

    Article  Google Scholar 

  • Environment and Climate Change Canada and the U.S. Environmental Protection Agency (2021) State of the Great Lakes 2019 Technical Report. Cat No. En161-3/1E-PDF. EPA 905-R-20-044. Available at binational.net

  • Thiel J, Byrne JM, Kappler A, Schink B, Pester M (2019) Pyrite formation from FeS and H2S is mediated through microbial redox activity. Proc Nat Acad Sci 116:6897–6902. https://doi.org/10.1073/pnas.1814412116

    Article  Google Scholar 

  • Turner LJ, Delorme LD (1996) Assessment of 210Pb data from Canadian lakes using the CIC and CRS models. Environ Geol 28:78–87

    Article  Google Scholar 

  • van den Berg GA, Buykx SEJ, van den Hoop MAGT, van der Heidjt LM, Zwolsman JJG (2001) Vertical profiles od trace metals and acid-volatile sulphide in a dynamic sedimentary environment: Lake Ketel, The Netherlands. Appl Geochem 16:781–791

    Article  Google Scholar 

  • van Griethuysen C, de Lange HJ, van den Heuij M, de Bies SC, Gillissen F, Koelmans AA (2006) Temporal dynamics of AVS and SEM in sediment of shallow freshwater floodplain lakes. Appl Geochem 21:632–642

    Article  Google Scholar 

  • Yuan F (2017) A multi-element sediment record of hydrological and environmental changes from Lake Erie since 1800. J Paleolimnol 58:23–42

    Article  Google Scholar 

  • Zhou Y, Michalak AM, Beletsky D, Rao YR, Richards RP (2015) Record-breaking Lake Erie hypoxia during 2012 drought. Environ Sci Technol 49:800–807

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Natural Sciences and Engineering Council Canada. We thank Rick Bourbonniere for his constructive advice and are grateful to Environment Canada and Climate Change and the crew of the CCGS Limnos for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis A. Molot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verschoor, M.J., Molot, L.A. & Zastepa, A. Acid-volatile sulfide and acid-extractable iron sediment profiles do not track changes in lake trophic status and atmospheric sulfur deposition. J Paleolimnol 68, 189–201 (2022). https://doi.org/10.1007/s10933-022-00240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-022-00240-1

Keywords

Navigation