Skip to main content

Advertisement

Log in

Recent cyanobacteria abundance in a large sub-tropical reservoir inferred from analysis of sediment cores

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Salto Grande is a large South American reservoir on the border between Uruguay and Argentina that was impounded in 1979 and experiences recurrent, massive cyanobacteria blooms. A water-monitoring program was initiated 20 years after the dam was built, hence the causes and onset of cyanobacteria blooms remain poorly known. We collected two sediment cores from the old river channel in the reservoir (z = 17 m) and used physical, chemical and biological variables in the sediments, along with existing limnological data, to explore the history of cyanobacteria in the sub-tropical water body. Cyanobacteria fossil pigments were present at low concentrations during the first 24 years after impoundment, but more than doubled thereafter. Phytoplankton abundance tracked shifts in cyanobacteria pigment concentration, indicating an overall increase in all primary producers. Several sediment variables indicate a decline in water quality after 2003, such as increases in the number of photosynthetic sulfur bacteria and a reduction in sediment magnetic susceptibility. Akinetes (dormant cyanobacteria cells, Order Nostocales) in recent reservoir deposits were abundant and five species germinated under laboratory conditions, underscoring the ability of akinetes to initiate cyanobacteria blooms. The germinated assemblage reflected closely the composition of cyanobacteria blooms in the reservoir. Recorded increases in air temperature and decreases in wind speed, together with other variables (e.g. nutrients), can promote the large, recurrent cyanobacteria blooms. Invasion of the bivalve Limnoperna fortunei apparently promoted cyanobacteria blooms by preferential feeding on other phytoplankton taxa, and perhaps by altering nutrient concentrations and ratios. This work highlights the potential for using multiple variables in sediment cores from large reservoirs to better understand the responses of biota to multiple environmental stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amé MV, Diaz MD, Wunderlin DA (2003) Occurrence of toxic cyanobacterial blooms in San Roque reservoir (Córdoba, Argentina): a field and chemometric study. Environ Toxicol 18:192–201

    Google Scholar 

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1. Basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 171–203

    Google Scholar 

  • Appleby PG, Oldfield F (1983) The assessment of 210Pb from sites with varying sediment accumulation rates. Hydrobiologia 103:29–35

    Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Google Scholar 

  • Berón LE (1990) Features of the limnological behavior of Salto Grande’s reservoir (Argentina–Uruguay). Ecol Model 52:87–102

    Google Scholar 

  • Birks HJB, Gordon AD (1985) Numerical methods in quaternary pollen analysis. Academic Press, London

    Google Scholar 

  • Boltovskoy D, Correa N, Cataldo D, Sylvester F (2006) Dispersion and ecological impact of the invasive freshwater bivalve Limnoperna fortunei in the Río de la Plata watershed and beyond. Biol Invasions 8:947–963

    Google Scholar 

  • Boltovskoy D, Correa N, Bordet F, Leites V, Cataldo D (2013) Toxic Microcystis (cyanobacteria) inhibit recruitment of the bloom-enhancing invasive bivalve Limnoperna fortunei. Freshw Biol 58:1968–1981

    Google Scholar 

  • Bordet F, Fontanarrosa MS, O’Farrell I (2017) Influence of light and mixing regime on bloom-forming phytoplankton in a subtropical reservoir. River Res Appl 33:1315–1326

    Google Scholar 

  • Carpenter SR, Christensen DL, Cole JJ, Cottingham KL, He X, Hodgson JR, Kitchell JF, Knight SE, Pace ML, Post DM, Schindler DE, Voichick N (1995) Biological control of eutrophication in lakes. Environ Sci Technol 29:784–786

    Google Scholar 

  • Cataldo D, Vinocur A, O′Farrell I, Paolucci E, Leites V, Boltovskoy D (2012) The introduced bivalve Limnoperna fortunei boosts Microcystis growth in Salto Grande reservoir (Argentina): evidence from mesocosm experiments. Hydrobiologia 680:25–38

    Google Scholar 

  • Chalar G (2006) Eutrophication dynamics on different temporary scales: Salto Grande reservoir (Argentina–Uruguay). In: Tundisi JG, Matsumura-Tundisi T, Sidagis C (eds) Eutrophication in South America: causes, consequences and technologies for management and control. International Institute of Ecology, São Carlos, pp 87–101

    Google Scholar 

  • Chalar G (2009) The use of phytoplankton patterns of diversity for algal bloom management. Limnologica 39:200–208

    Google Scholar 

  • Cirés S, Wörmer L, Agha R, Quesada A (2013) Overwintering populations of Anabaena, Aphanizomenon and Microcystis as potential inocula for summer blooms. J Plankton Res 35:1254–1266

    Google Scholar 

  • de Tezanos PP, Litchman E (2010a) Interactive effects of N: P ratios and light on nitrogen-fixer abundance. Oikos 119:567–575

    Google Scholar 

  • de Tezanos PP, Litchman E (2010b) Eco-physiological responses of nitrogen-fixing cyanobacteria to light. Hydrobiologia 639:63–68

    Google Scholar 

  • Dearing JA (2013) Why future Earth needs lake sediment studies. J Paleolimnol 49:537–545

    Google Scholar 

  • Drozd A, Arturi M (2017) Dinámica de los cambios en los patrones de coberturas/usos del suelo, entre 1985 y 2015, Federación, Entre Ríos: Patrón de cambios en las superficies forestadas y otras coberturas/usos y su relación a órdenes de suelos. Informe elaborado desde el Laboratorio de Investigación de Sistemas Ecológicos y Ambientales (LISEA) de la Universidad Nacional de la Plata (UNLP) para la Comisión Técnica Mixta Salto Grande (CTM), Argentina

  • Drozd A, de Tezanos PP, Fernandez V, Bazzalo M, Bordet F, Ibaniez G (2019) Hyperspectral remote sensing monitoring of cyanobacteria blooms from the Salto Grande reservoir: high and medium spatial resolution satellite algorithms simulation. Mar Freshw Res. https://doi.org/10.1071/MF18429

    Article  Google Scholar 

  • Frau D, Rojas Molina F, Devercelli M, José de Paggi S (2013) The effect of an invading filter-feeding bivalve on a phytoplankton assemblage in the Paraná system: a mesocosm experiment. Mar Behav Physiol 45:303–316

    Google Scholar 

  • Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold, New York

    Google Scholar 

  • Guilizzoni P (2012) Palaeolimnology: an introduction. In: Gopal B (ed) Limnology of rivers and lakes. Encyclopedia of Life Support Systems (EOLSS), UNESCO, EOLSS Publishers, Oxford

    Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chantey MH (eds) Culture of marine invertebrate animals. Plenum Publishers, New York, pp 29–60

    Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Google Scholar 

  • Hellweger FL, Kravchuk E, Novotny V, Gladyshev M (2008) Agent-based modeling of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir. Limnol Oceanogr 53:1227–1241

    Google Scholar 

  • Huisman JM, Matthijs HCP, Visser PM (2005) Harmful cyanobacteria. Springer aquatic ecology, series 3. Springer, Dordrecht

    Google Scholar 

  • Ibelings BW, Havens KE (2008) Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. advances in experimental medicine and biology. Springer, New York, pp 675–732

    Google Scholar 

  • IPCC (2014) Cambio climático 2014: Informe de síntesis. Contribución de los Grupos de Trabajo I, II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. IPCC, Ginebra, Suiza

    Google Scholar 

  • Joung SH, Oh HM, Ko SR, Ahn CY (2011) Correlation between environmental FACTORS and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae 10:188–193

    Google Scholar 

  • Kalff J (2002) Limnology: inland waters ecosystems. Prentice Hall Publishers, Upper Saddle River, NJ

    Google Scholar 

  • Kawamura N, Oda H, Ikehara K, Yamazaki T, Shioi K, Taga S, Hatakeyama S, Torii M (2007) Diagenetic effect on magnetic properties of marine core sediments from the southern Okhotsk Sea. Earth Planets Space 59:83–93

    Google Scholar 

  • Kowalewski GA, Kornijów R, McGowan S, Kaczorowska A, Bałaga K, Namiotko T, Gąsiorowski M, Wasiłowska A (2016) Disentangling natural and anthropogenic drivers of changes in a shallow lake using palaeolimnology and historical archives. Hydrobiologia 767:301–320

    Google Scholar 

  • Lami A, Guilizzoni P, Marchetto A (2000) High resolution analysis of fossil pigments, carbon, nitrogen and sulphur in the sediment of eight European Alpine lakes: the MOLAR project. J Limnol 59:15–28

    Google Scholar 

  • Lami A, Musazzi S, Marchetto A, Buchaca T, Kernan M, Jeppesen E, Guilizzoni P (2009) Sedimentary pigments in 308 alpine lakes and their relation to environmental gradients. Adv Limnol 62:217–238

    Google Scholar 

  • Leavitt PR, Sanford PR, Carpenter SR, Kitchell JF, Benkowski D (1993) Annual fossil records of food-web manipulation. In: Carpenter SR, Kitchell JF (eds) The trophic cascade in lakes. Cambridge University Press, Cambridge, pp 278–309

    Google Scholar 

  • Legrand B, Le Jeune AH, Colombet J, Thouvenot A, Latour D (2017) Akinetes may be representative of past nostocalean blooms: a case study of their benthic spatiotemporal distribution and potential for germination in a eutrophic lake. Appl Environ Microbiol 83:1–14

    Google Scholar 

  • Li Z, Yu J, Yang M, Zhang J, Burch MD, Han W (2010) Cyanobacterial population and harmful metabolites dynamics during a bloom in Yanghe Reservoir, North China. Harmful Algae 9:481–488

    Google Scholar 

  • MacKenzie AB, Hardie SML, Farmer JG, Eades LJ, Pulford ID (2011) Analytical and sampling constrains in 210Pb dating. Sci Total Environ 409:1298–1304

    Google Scholar 

  • McCall PI, Robbins JA, Matisoff G (1984) 137Cs and 210Pb transport and geochronologies in urbanized reservoirs with rapidly increasing sedimentation rates. Chem Geol 44:33–66

    Google Scholar 

  • McGowan S (2013) Pigment studies. In: Elias SA (ed) Encyclopedia of quaternary science, 2nd edn. Elsevier, Amsterdam, pp 326–338

    Google Scholar 

  • Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327

    Google Scholar 

  • O’Farrell I, Izaguirre I (2014) Phytoplankton of the middle and lower stretches of the Uruguay River. Adv Limnol 65:113–126

    Google Scholar 

  • O’Farrell I, Bordet F, Chaparro G (2012) Bloom forming cyanobacterial complexes co-occurring in a subtropical large reservoir: validation of dominant eco-strategies. Hydrobiologia 698:175–190

    Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Google Scholar 

  • Paerl HW (2017) Controlling harmful cyanobacterial blooms in a climatically more extreme world: management options and research needs. J Plankton Res 39:763–771

    Google Scholar 

  • Paerl HW, Paul VJ (2012) Climate change: links to global expansion of harmful cyanobacteria. Water Res 46:1349–1363

    Google Scholar 

  • Pennington W, Cambray RS, Eakins JD, Harkness DD (1976) Radionuclide dating of the recent sediments of Blelham Tarn. Freshw Biol 6:317–331

    Google Scholar 

  • Rahman AKM, Al Bakri D, Ford P, Church T (2005) Limnological characteristics, eutrophication and cyanobacterial blooms in an inland reservoir, Australia. Lake Reserv Res Manag 10:211–220

    Google Scholar 

  • Riedinger-Whitmore MA, Whitmore TJ, Smoak JM, Brenner M, Moore A, Curtis J, Schelske CL (2005) Cyanobacterial proliferation is a recent response to eutrophication in many Florida lakes: a paleolimnological assessment. Lake Reserv Manag 21:423–435

    Google Scholar 

  • Rojas Molina F, Paggi JC, Devercelli M (2010) Zooplanktophagy in the natural diet and selectivity of the invasive mollusk Limnoperna fortunei. Biol Inv 12:1647–1659

    Google Scholar 

  • Taranu ZE, Gregory-Eaves I, Leavitt PR, Bunting L, Buchaca T, Catalan J, Domaizon I, Guilizzoni P, Lami A, McGowan S, Moorhouse H, Morabito G, Pick FR, Stevenson MA, Thompson PL, Vinebrooke RD (2015) Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol Lett 18:375–384

    Google Scholar 

  • Te SH, Gin KYH (2011) The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae 10:319–329

    Google Scholar 

  • Thompson R, Oldfield F (1986) Environmental magnetism. Allen & Unwin Ltd., London

    Google Scholar 

  • Wagner C, Adrian R (2009) Quantifying the effects of climate change. Limnol Oceanogr 54:2460–2468

    Google Scholar 

  • Wengrat S, Padial AA, Jeppesen E, Davidson TA, Fontana L, Costa-Böddeker S, Bicudo DC (2018) Paleolimnological records reveal biotic homogenization driven by eutrophication in tropical reservoirs. J Paleolimnol 60:299–309

    Google Scholar 

  • Williamson CE, Saros JE, Warwick FV, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282

    Google Scholar 

  • Znachor P, Jurczak T, Komárková J, Jezberová J, Mankiewicz J, Kaštovská K, Zapomělová E (2006) Summer changes in cyanobacterial bloom composition and microcystin concentration in eutrophic Czech reservoirs. Environ Toxicol 21:236–243

    Google Scholar 

Download references

Acknowledgements

DG acknowledges a grant from the Comisión Administradora del Río Uruguay (CARU) and PTP acknowledges funding from PIP 0236 (CONICET). We are grateful to the Comisión Técnica Mixta de Salto Grande for providing: (1) financial assistance to date the sediments, (2) the boat for sampling, and (3) historical data on water flow and water depth. We thank the Instituto Nacional de Tecnología Agropecuaria (INTA) for providing historical data on rainfall, wind speed and air temperature. We are grateful to Allyson Hutchens for language revision. We thank the Editor and two anonymous reviewers for their feedback and comments, which improved our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula de Tezanos Pinto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangi, D., Plastani, M.S., Laprida, C. et al. Recent cyanobacteria abundance in a large sub-tropical reservoir inferred from analysis of sediment cores. J Paleolimnol 63, 195–209 (2020). https://doi.org/10.1007/s10933-020-00110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-020-00110-8

Keywords

Navigation