Skip to main content
Log in

Chironomid-based inference models for estimating mean July air temperature and water depth from lakes in Yakutia, northeastern Russia

Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We investigated the subfossil chironomid fauna of 150 lakes situated in Yakutia, northeastern Russia. The objective of this study was to assess the relationship between chironomid assemblage composition and the environment and to develop chironomid inference models for quantifying past regional climate and environmental changes in this poorly investigated area of northern Russia. The environmental data and sediment samples for chironomid analysis were collected in 5 consecutive years, 2003–2007, from several regions of Yakutia. The lakes spanned wide latitudinal and longitudinal ranges and were distributed through several environmental zones (arctic tundra, typical tundra, steppe-tundra, boreal coniferous forest), but all were situated within the zone of continuous permafrost. Mean July temperature (TJuly) varied from 3.4°C in the Laptev Sea region to 18.8°C in central Yakutia near Yakutsk. Water depth (WD) varied from 0.1 to 17.1 m. TJuly and WD were identified as the strongest predictor variables explaining the chironomid communitiy composition and distribution of the taxa in our data set. Quantitative transfer functions were developed using two unimodal regression calibration techniques: simple weighted averaging (WA) and weighted averaging partial least squares (WA-PLS). The two-component TJuly WA-PLS model had the best performance. It produced a strong coefficient of determination (r 2 boot = 0.87), root mean square error of prediction (RMSEP = 1.93), and max bias (max biasboot = 2.17). For WD, the one-component WA-PLS model had the best performance (r 2 boot = 0.62, RMSEP = 0.35, max biasboot = 0.47).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altman D, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. The Statistician 32:307–317

    Article  Google Scholar 

  • Anderson PM, Lozhkin AV, Brubaker LB (2002) Implications of a 24, 000-yr palynological record for a Younger Dryas cooling and for boreal forest development in northeastern Siberia. Quat Res 57:325–333

    Article  Google Scholar 

  • Andreev A, Tarasov P, Schwamborn G, Iljashuk B, Iljashuk E, Bobrov A, Klimanov V, Rachold V (2004) Holocene palaeoenvironmental records from Nikolay Lake, Lena Delta, Arctic Russia. Palaeogeogr Palaeoclimatol Palaeoecol 209:197–217

    Article  Google Scholar 

  • Andreev A, Tarasov P, Iljashuk B, Iljashuk E, Cremer H, Hermichen WD, Wischer F (2005) Holocene environmental history in Lake Lyadhej-To sediments, Polar Ural, Russia. Palaeogeogr Palaeoclimatol Palaeoecol 23:181–203

    Article  Google Scholar 

  • Barley EM, Walker IR, Kurek J, Cwynar LC, Mathewes RW, Gajewski K, Finney BP (2006) A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. J Paleolimnol 36:295–314

    Article  Google Scholar 

  • Birks HJB (1995) Quantitative palaeoenvironmental reconstructions. In: Maddy D, Brew JS (eds) Statistical modelling of quaternary science data, Technical Guide 5. Quaternary Research Association, Cambridge, pp 161–254

    Google Scholar 

  • Birks HJB (1998) Numerical tools in paleolimnology progress, potential, and problems. J Paleolimnol 20:307–332

    Article  Google Scholar 

  • Birks HJB, Juggins S, Line JM (1990a) Lake surface-water chemistry reconstructions from palaeolimnolical data. In: Mason B (ed) The surface water acidification programme. Cambridge University Press, Cambridge, pp 301–313

    Google Scholar 

  • Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990b) Diatoms and pH reconstruction. Philos T Roy Soc B 327:263–278

    Article  Google Scholar 

  • Bond G, Kromer B, Beer J, Muscheler R, Evans M, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Athlantic climate during the Holocene. Science 294:2130–2136

    Article  Google Scholar 

  • Brodersen KP, Anderson NJ (2002) Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwat Biol 47:1137–1157

    Article  Google Scholar 

  • Brooks SJ, Birks HJB (2000) Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway. J Paleolimnol 23:77–89

    Article  Google Scholar 

  • Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from late-glacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1723–1741

    Article  Google Scholar 

  • Brooks SJ, Langdon PG, Heiri O (2007) Using and identifying chironomid larvae in palaeoecology, QRA Technical Guide No 10. Quaternary Research Association, London

  • Dieffenbacher-Krall AC, Vandergoes MJ, Denton GH (2007) An inference model for mean summer air temperatures in the Southern Alps, New Zealand using subfossil chironomids. Quat Sci Rev 26:2487–2504

    Article  Google Scholar 

  • Eggermont H, Russel JM, Schettler G, Van Dame K, Bessems I, Verschuren D (2007) Physical and chemical limnology of alpine lakes and pools in the Rwenzori Mountains (Uganda-DR Congo). Hydrobiologia 592:151–173

    Article  Google Scholar 

  • Gavrilova MK (1998) Klimaty kholodnyh regionov zemli (Climates of cold regions of the world). Russian Academy of Science, Siberian Branch, Permafrost Institute, Yakutsk

    Google Scholar 

  • Geocriology of USSR (1989) Middle Siberia. Nauka, Moskwa

    Google Scholar 

  • Hofmann W (1998) Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. J Paleolimnol 19:55–62

    Article  Google Scholar 

  • Juggins S (2007) C2 version 1.5 user guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne, UK

    Google Scholar 

  • Karationis FE, Kirillov FN, Muhomedijarov FB (1956) Ryby srednego techenija Leny (Fishes of the middle stream of the river Lena). Proc Inst Biol Yakutia Acad Sci 2:3–144

    Google Scholar 

  • Kiknadze II, Istomina AG, Gunderina LI, Salova TA, Ajmanova KG, Savvinov DD (1996) Kariofondy chironomid kriolitozony Yakutii: triba Chironomini (Cariofonds of chironomids of Criolithozone of Yakutia: triba Chironomini). Nauka, Novosibirsk

    Google Scholar 

  • Kiknadze II, Istomina AG, Salova TA (2002) Functional morphology of polytene chromosomes of Chironomus pilicornis F from cryolithozone. Cytologia 44:89–96

    Google Scholar 

  • Korhola A, Olander H, Blom T (2000) Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. J Paleolimnol 24:43–54

    Article  Google Scholar 

  • Kumke T, Ksenofontova M, Pestryakova L, Nazarova L, Hubberten HW (2007) Limnological characteristics of lakes in the lowlands of Central Yakutia, Russia. J Limnol 66:40–53

    Google Scholar 

  • Larocque I (2001) How many chironomid head capsules is enough? A statistical approach to determine sample size for paleoclimatic reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 172:133–142

    Article  Google Scholar 

  • Larocque I, Hall RI, Grahn E (2001) Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322

    Article  Google Scholar 

  • Lotter AF, Walker IR, Brooks SJ, Hofmann W (1999) An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs. North America. Quat Sci Rev 18:717–735

    Article  Google Scholar 

  • Makarchenko EA, Makarchenko MA (1999) Chironomidae. In: Tsalolikhin SJ (ed) Key to freshwater invertebrates of Russia and adjacent lands. V.4. Zoological Institute RAS, St. Petersburg, pp 210–295, 670–857

  • Nazarova LB, Pestryakova LA, Ushnitskaya L, Hubberten HW (2008) Chironomids (Diptera: Chironomidae) in lakes of central Yakutia and their indicative potential for paleoclimatic research. Contemp Prob Ecol 1:335–345

    Article  Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Res 21:1–25

    Article  Google Scholar 

  • Ogay RI (1979) Zoobenthos. In: Biologia Viluiskogo vodohranilisha (Biology of Viluy water reservoir). Nauka, Novosibirsk, pp 136–155

  • Olander H, Birks HJB, Korhola A, Blom T (1999) An expanded calibration model for inferring lake water and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene 9:279–294

    Article  Google Scholar 

  • Overland JE, Wang M (2005) The Arctic climate paradox: the recent decrease of the Arctic Oscillation. Geophys Res Lett 32:1–5

    Google Scholar 

  • Palmer S, Walker IR, Heinrichs M, Hebda R, Scudder G (2002) Postglacial midge community change and Holocene palaeotemperature reconstructions near treeline, southern British Columbia (Canada). J Paleolimnol 28:469–490

    Article  Google Scholar 

  • Porinchu DF, Cwynar LC (2000) The distribution of freshwater Chironomidae (Insecta: Diptera) across treeline near the lower Lena River, northeast Siberia, Russia. Arct Antarct Alp Res 32:429–437

    Article  Google Scholar 

  • Porinchu DF, Cwynar LC (2002) Late-Quaternary history of midge communities and climate from a tundra site near the lower Lena River, Northeast Siberia. J Paleolimnol 27:59–69

    Article  Google Scholar 

  • Quinlan R, Smol JP (2001) Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J Paleolim 26:327–342

    Article  Google Scholar 

  • Rees ABH, Cwynar LC, Cranston P (2008) Midges (Chironomidae, Ceratopogonidae, Choaboridae) as a temperature proxy: a training set from Tasmania, Australia. J Paleolimnol 40:1159–1178

    Google Scholar 

  • Rosenberg SM, Walker IR, Mathews RW, Hallet DJ (2004) Midge-inferred Holocene climate history of two subalpine lakes in the southern Columbia. Holocene 14:258–271

    Article  Google Scholar 

  • Sæther OA (2004) The chironomids described by Lundström (1918) from arctic Siberia (Diptera, Chironomidae) with a redescription of Derotanypus sibiricus (Kruglova and Chernovskii). Zootaxa 595:1–35

    Google Scholar 

  • Salova TA (1993) Zoobenthos. In: Ekologia Srednei Amgi (Ecology of the Middle Amga river). Yakutsk, pp 44–48

  • Shobanov NA, Wuelker WF, Kiknadze II (2002) Chironomus albimaculatus sp. n. and C. trabicola sp. n. (Diptera, Chironomidae) from Polar Russia. Aquat Insect 24:169–188

    Article  Google Scholar 

  • Smol JP, Wolfe A, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D et al (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci (PNAS) 102:4397–4402

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Co, New York

    Google Scholar 

  • Solignac S, Giraudeau J, de Vernal A (2006) Holocene sea surface conditions in the western North Atlantic: spatial and temporal heterogeneities. Paleoceanography 21:PA2004

    Google Scholar 

  • Streletzkaja EA (1972) Zoobenthos ozer Kolymo-Indigirskoi nizmennosti i ego rol’ v pitanii ryb (Zoobenthos of the lakes of Kolyma-Indigirka lowland and the role it plays in fishes diet). In: Rybohozjaistvennoe osvoenie ozer basseina srednei Kolymy (Fisheries in the lakes of Middle Kolyma). Yakutsk, pp 115–139

  • Tahtadzhan AL (1978) Floristic areas of the world. Nauka, Leningrad, 248 pp

  • ter Braak CJF (1990) Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen

    Google Scholar 

  • ter Braak CJF (1995) Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, pp 69–173

    Google Scholar 

  • ter Braak CJF, Juggins S (1993) Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270:485–502

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows (version 4). Centre for Biometry Wageningen, New York

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2002a) CANOCO for windows: software for community ordination (version 4.5). Microcomputer Power, Ithaca, NY

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2002b) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY

    Google Scholar 

  • Tjaptirgjanov MM, Labutina TM, Sokolova VA (1992) Ocenka sostojanija elementov vodnoi ecosistemy (Estimation of the ecosystem state). In: Ekologia basseina reki Viluy: promyshlennoe zagrjaznenie (Ecology of river Viluy basin: industrial pollution). Yakutsk, pp 64–70

  • Walker IR, Levesque AJ, Cwynar LC, Lotter AE (1997) An expanded surface water paleotemperaure inference model for use with fossil midges from Eastern Canada. J Paleolimnol 18:165–178

    Article  Google Scholar 

  • Wetterich S, Herzschuh U, Meyer H, Pestryakova L, Plessen B, Lopez CML, Schirrmeister L (2008) Evaporation effects as reflected in freshwaters and ostracod calcite from modern environments in Central and Northeast Yakutia (East Siberia, Russia). Hydrobiologia 614:171–195

    Article  Google Scholar 

  • Wiederholm T (1983) Chironomidae of the holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scand Suppl 19:1–457

  • Woodward CA, Shulmeister J (2006) New Zealand chironomids as proxies for human-induced and natural environmental change: transfer functions for temperature and lake production (chlorophylle a). J Paleolimnol 36:407–429

    Article  Google Scholar 

  • Zelentsov NI, Shilova AI (1996) Fauna hironomid (Diptera, Chironomidae) Ust-Lenskogo gosudarstvennogo zapovednika. (Fauna of chironomids of Ust-Lenskij natural reserve). Biologia vnutrennih vod (Biol Inland waters) 1:54–61

    Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Steve Brooks (The Natural History Museum, London) for our long lasting collaboration, Mrs Evgenia Vinogradova and Denis Henning (AWI Potsdam) for their help in preparation of numerous slides with chironomid head capsules, and Antje Eulenburg for support during analytical work in the laboratories at AWI Potsdam. Sincere thanks are given to Dr. Wolfgang Riss (University of Muenster) for the helpful discussions and anonymous reviewers for their valuable comments. This project was supported by Alexander von Humboldt Foundation and Deutsche Forschungsgemeinschaft (DFG). The study presented here is a part of the Russian–German cooperative scientific efforts of the Alfred Wegener Institute. We thank all Russian and German colleagues who helped us during fieldwork over several years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa Nazarova.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarova, L., Herzschuh, U., Wetterich, S. et al. Chironomid-based inference models for estimating mean July air temperature and water depth from lakes in Yakutia, northeastern Russia. J Paleolimnol 45, 57–71 (2011). https://doi.org/10.1007/s10933-010-9479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-010-9479-4

Keywords

Navigation