Skip to main content
Log in

Antemortem Stress Regulates Postmortem Glycolysis in Muscle by Deacetylation of Pyruvate Kinase M1 at K141

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

It is well known that preslaughter (antemortem) stress such as rough handling, transportation, a negative environment, physical discomfort, lack of consistent routine, and bad feed quality has a big impact on meat quality. The antemortem-induced poor meat quality is characterized by low pH, a pale and exudative appearance, and a soft texture. Previous studies indicate that antemortem stress plays a key role in regulating protein acetylation and glycolysis in postmortem (PM) muscle. However, the underlying molecular and biochemical mechanism is not clearly understood yet. In this study, we investigated the relationship between antemortem and protein acetylation and glycolysis using murine longissimus dorsi muscle isolated from ICR mice and murine muscle cell line C2C12 treated with epinephrine hydrochloride. Because adrenaline secretion increases in stressed animals, epinephrine hydrochloride was intraperitoneally injected epinephrine into mice to simulate pre-slaughter stress in this study to facilitate experimental operations and save experimental costs. Our findings demonstrated that protein acetylation in pyruvate kinase M1 (PKM1) form is significantly reduced by antemortem, and the reduced acetylation subsequently leads to an increase in PKM1 enzymatic activity which causes increased glycolysis in PM muscle. By using molecular approaches, we identified lysine 141 in PKM1 as a critical residue for acetylation. Our results in this study provide useful insight for controlling or improving meat quality in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guardia MD, Estany J, Balasch S, Oliver MA, Gispert M, Diestre A (2004) Risk assessment of PSE condition due to pre-slaughter conditions and RYR1 gene in pigs. Meat Sci 67(3):471–478. https://doi.org/10.1016/j.meatsci.2003.11.020

    Article  CAS  PubMed  Google Scholar 

  2. Leheska JM, Wulf DM, Maddock RJ (2002) Effects of fasting and transportation on pork quality development and extent of postmortem metabolism. J Anim Sci 80(12):3194–3202. https://doi.org/10.2527/2002.80123194x

    Article  CAS  PubMed  Google Scholar 

  3. Rosenvold K, Andersen HJ (2003) Factors of significance for pork quality—a review. Meat Sci 64(3):219–237. https://doi.org/10.1016/S0309-1740(02)00186-9

    Article  PubMed  Google Scholar 

  4. Briskey EJ (1964) Etiological status and associated studies of pale, soft, exudative porcine musculature. Adv Food Res 13:89–178. https://doi.org/10.1016/s0065-2628(08)60100-7

    Article  CAS  PubMed  Google Scholar 

  5. Solomon MB, Van Laack LM, Eastridge JS (1998) Biophysical basis of pale, soft, exudative (PSE) pork and poultry muscle: a review. J Muscle Foods 9:1–12

    Article  Google Scholar 

  6. Shen QW, Means WJ, Thompson SA, Underwood KR, Zhu MJ, McCormick RJ, Ford SP, Du M (2006) Pre-slaughter transport, AMP-activated protein kinase, glycolysis, and quality of pork loin. Meat Sci 74(2):388–395. https://doi.org/10.1016/j.meatsci.2006.04.007

    Article  CAS  PubMed  Google Scholar 

  7. Shen QW, Means WJ, Underwood KR, Thompson SA, Zhu MJ, McCormick RJ, Ford SP, Ellis M, Du M (2006) Early post-mortem AMP-activated protein kinase (AMPK) activation leads to phosphofructokinase-2 and -1 (PFK-2 and PFK-1) phosphorylation and the development of pale, soft, and exudative (PSE) conditions in porcine longissimus muscle. J Agric Food Chem 54(15):5583–5589. https://doi.org/10.1021/jf060411k. (PMID: 16848549)

    Article  CAS  PubMed  Google Scholar 

  8. Kouzarides T (2000) Acetylation: a regulatory modification to rival phosphorylation? EMBO J 19(6):1176–1179. https://doi.org/10.1093/emboj/19.6.1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Phillips DM (1963) The presence of acetyl groups of histones. Biochem J 87:258–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ali I, Conrad RJ, Verdin E, Ott M (2018) Lysine acetylation goes global: from epigenetics to metabolism and therapeutics. Chem Rev 118(3):1216–1252. https://doi.org/10.1021/acs.chemrev.7b00181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Montgomery DC, Sorum AW, Meier JL (2015) Defining the orphan functions of lysine acetyltransferases. ACS Chem Biol 10(1):85–94. https://doi.org/10.1021/cb500853p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spange S, Wagner T, Heinzel T, Kramer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41(1):185–198. https://doi.org/10.1016/j.biocel.2008.08.027

    Article  CAS  PubMed  Google Scholar 

  13. Jiang S, Liu Y, Shen Z, Zhou B, Shen QW (2019) Acetylome profiling reveals extensive involvement of lysine acetylation in the conversion of muscle to meat. J Proteomics 205:103412. https://doi.org/10.1016/j.jprot.2019.103412

    Article  CAS  PubMed  Google Scholar 

  14. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning ZB, Zeng R, Xiong Y, Guan KL, Zhao S, Zhao GP (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327(5968):1004–1007. https://doi.org/10.1126/science.1179687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004. https://doi.org/10.1126/science.1179689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Z, Li X, Wang Z, Shen QW, Zhang D (2016) Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle. Food Chem 202:94–98. https://doi.org/10.1016/j.foodchem.2016.01.085

    Article  CAS  PubMed  Google Scholar 

  17. Zhou B, Shen Z, Liu Y, Wang C, Shen QW (2019) Proteomic analysis reveals that lysine acetylation mediates the effect of antemortem stress on postmortem meat quality development. Food Chem 293:396–407. https://doi.org/10.1016/j.foodchem.2019.04.122

    Article  CAS  PubMed  Google Scholar 

  18. Kemp CM, Sensky PL, Bardsley RG, Buttery PJ, Parr T (2010) Tenderness—an enzymatic view. Meat Sci 84(2):248–256. https://doi.org/10.1016/j.meatsci.2009.06.008. (Epub 2009 Jun 8; PMID: 20374783)

    Article  CAS  PubMed  Google Scholar 

  19. Scheffler TL, Gerrard DE (2007) Mechanisms controlling pork quality development: the biochemistry controlling postmortem energy metabolism. Meat Sci 77(1):7–16. https://doi.org/10.1016/j.meatsci.2007.04.024. (Epub 2007 May 10 PMID: 22061391)

    Article  CAS  PubMed  Google Scholar 

  20. Wulf DM, Emnett RS, Leheska JM, Moeller SJ (2002) Relationships among glycolytic potential, dark cutting (dark, firm, and dry) beef, and cooked beef palatability. J Anim Sci 80(7):1895–1903. https://doi.org/10.2527/2002.8071895x. (PMID: 12162657)

    Article  CAS  PubMed  Google Scholar 

  21. Li Q, Li Z, Lou A, Wang Z, Zhang D, Shen QW (2017) Histone acetyltransferase inhibitors antagonize AMP-activated protein kinase in postmortem glycolysis. Asian Australas J Anim Sci 30(6):857–864. https://doi.org/10.5713/ajas.16.0556

    Article  CAS  PubMed  Google Scholar 

  22. Muirhead H, Clayden DA, Barford D, Lorimer CG, Fothergill-Gilmore LA, Schiltz E, Schmitt W (1986) The structure of cat muscle pyruvate kinase. EMBO J 5(3):475–481. https://doi.org/10.1002/j.1460-2075.1986.tb04236.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Filipp FV (2013) Cancer metabolism meets systems biology: pyruvate kinase isoform PKM2 is a metabolic master regulator. J Carcinog 24(12):14. https://doi.org/10.4103/1477-3163.115423. (PMID: 23961261; PMCID: PMC3746496)

    Article  CAS  Google Scholar 

  24. Liu M, Wang Y, Ruan Y, Bai C, Qiu L, Cui Y, Ying G, Li B (2018) PKM2 promotes reductive glutamine metabolism. Cancer Biol Med 15(4):389–399. https://doi.org/10.20892/j.issn.2095-3941.2018.0122. (PMID: 30891326; PMCID: PMC6420233)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Q, Li C, Elnwasany A, Sharma G, An YA, Zhang G, Elhelaly WM, Lin J, Gong Y, Chen G, Wang M, Zhao S, Dai C, Smart CD, Liu J, Luo X, Deng Y, Tan L, Lv SJ, Davidson SM, Locasale JW, Lorenzi PL, Malloy CR, Gillette TG, Vander Heiden MG, Scherer PE, Szweda LI, Fu G, Wang ZV (2021) PKM1 exerts critical roles in cardiac remodeling under pressure overload in the heart. Circulation 144(9):712–727. https://doi.org/10.1161/CIRCULATIONAHA.121.054885. (Epub 2021 Jun 9. PMID: 34102853; PMCID: PMC8405569)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y, Wang G, Huang Y, Xiong Y, Guan KL, Lei QY (2011) Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 42(6):719–730. https://doi.org/10.1016/j.molcel.2011.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park SH, Ozden O, Liu G, Song HY, Zhu Y, Yan Y, Zou X, Kang HJ, Jiang H, Principe DR, Cha YI, Roh M, Vassilopoulos A, Gius D (2016) SIRT2-mediated deacetylation and tetramerization of pyruvate kinase directs glycolysis and tumor growth. Cancer Res 76(13):3802–3812. https://doi.org/10.1158/0008-5472.CAN-15-2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang S, Shen Q (2020) Construction of lentiviral overexpression vector of mouse PKM1 gene and screening of stably transfected C2C12 cell line and its effect of PKM1 on glycolysis. Sci Technol Food Ind 41(10):8

    CAS  Google Scholar 

  29. Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki N, Jiang Y, Zhou X, Li TT, Guan KL, Lei QY, Xiong Y (2013) Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell 52(3):340–352. https://doi.org/10.1016/j.molcel.2013.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reem NT, Van Eck J (2019) Application of CRISPR/Cas9-mediated gene editing in tomato. Methods Mol Biol (Clifton, NJ) 1917:171–182. https://doi.org/10.1007/978-1-4939-8991-1_13

    Article  CAS  Google Scholar 

  31. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50(6):919–930. https://doi.org/10.1016/j.molcel.2013.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang W, Wang S, Xiao M, Lin Y, Zhou L, Lei Q, Xiong Y, Guan KL, Zhao S (2011) Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell 43(1):33–44. https://doi.org/10.1016/j.molcel.2011.04.028. (PMID: 21726808; PMCID: PMC3962309)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant Number: 31571862; 5026301).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, QWS and SJ; methodology, SJ; formal analysis, QWS, investigation, QWS; writing-original draft preparation, SJ; writing-review and editing, QWS; project administration, QWS; funding acquisition, QWS. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Qingwu W. Shen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results.

Informed Consent

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 106 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Shen, Q.W. Antemortem Stress Regulates Postmortem Glycolysis in Muscle by Deacetylation of Pyruvate Kinase M1 at K141. Protein J 43, 351–361 (2024). https://doi.org/10.1007/s10930-023-10178-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10178-6

Keywords

Navigation