Skip to main content

Advertisement

Log in

A Proteomics Investigation of Salivary Profiles as Potential Biomarkers for Autism Spectrum Disorder (ASD)

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects approximately 1/68 children, with a more recent study suggesting numbers as high as 1/36. According to Diagnostic and Statistical Manual of Mental Disorders, the etiology of ASD is unknown and diagnosis of this disorder is behavioral. There is currently no biomarker signature for ASD, however, identifying a biomarker signature is crucial as it would aid in diagnosis, identifying treatment targets, monitoring treatments, and identifying the etiology of the disorder. Here we used nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) to investigate the saliva from individuals with ASD and matched controls in a 14 vs 14 study. We found numerous proteins to have statistically significant dysregulations, including lactotransferrin, transferrin, polymeric immunoglobulin receptor, Ig A L, Ig J chain, mucin 5 AC, and lipocalin 1 isoform X1. These findings are consistent with previous studies by our lab, and others, and point to dysregulations in the immune system, lipid metabolism and/or transport, and gastrointestinal disturbances, which are common and reoccurring topics in ASD research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The mass spectrometry raw data are available upon request.

Abbreviations

ASD:

Autism spectrum disorder

DSM:

Diagnostic and statistical manual of mental disorders

ADOS:

Autism diagnostic observation schedule

LC:

Liquid chromatography

MS:

Mass spectrometry

CDC:

Center for disease control

RT:

Room temperature

HPLC:

High performance liquid chromatography

DTT:

Dithiothreitol

IAA:

Iodoacetamide

UPLC:

Ultra-performance liquid chromatography

ACN:

Acetonitrile

FA:

Formic acid

References

  1. Association AP (2013) Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub, Washington

    Book  Google Scholar 

  2. Christensen DL, Baio J, Braun KV et al (2016) Prevalence and characteristics of autism spectrum disorder among children aged 8 Years — autism and developmental disabilities monitoring Network, 11 Sites, United States, 2012. MMWR Surveill Summ. https://doi.org/10.15585/mmwr.ss6503a1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maenner MJ, Warren Z, Williams AR, Amoakohene E, Bakian AV, Bilder D, A.,et al. (2023) Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 Sites, United States, 2020. MMWR Surveill Summ 72(2):1–14. https://doi.org/10.15585/mmwr.ss7202a1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Costanzo V, Chericoni N, Amendola FA, Casula L, Muratori F, Scattoni ML, Apicella F (2015) Early detection of autism spectrum disorders: From retrospective home video studies to prospective ‘high risk’ sibling studies. Neurosci Biobehav Rev 55:627–635. https://doi.org/10.1016/j.neubiorev.2015.06.006

    Article  PubMed  Google Scholar 

  5. Schalkwyk V, Gerrit I, Peluso F, Qayyum Z, McPartland JC, Fred R (2015) Varieties of misdiagnosis in ASD: an illustrative case series. J Autism Dev Disord 45(4):8

    Google Scholar 

  6. Eikeseth S, Klintwall L, Jahr E, Karlsson P (2012) Outcome for children with autism receiving early and intensive behavioral intervention in mainstream preschool and kindergarten settings. Res Autism Spectrum Disord 6(2):829–835. https://doi.org/10.1016/j.rasd.2011.09.002

    Article  Google Scholar 

  7. Eldevik S, Hastings RP, Hughes JC, Jahr E, Eikeseth S, Cross S (2009) Meta-analysis of early intensive behavioral intervention for children with autism. J Clin Child Adolesc Psychol 38(3):439–450. https://doi.org/10.1080/15374410902851739

    Article  PubMed  Google Scholar 

  8. Lovaas OI (1987) Behavioral treatment and normal educational and intellectual functioning in young autistic children. J Consult Clin Psychol 55(1):3–9

    Article  CAS  PubMed  Google Scholar 

  9. Wormwood KL, Aslebagh R, Channaveerappa D, Dupree EJ, Borland MM, Ryan JP et al (2015) Salivary proteomics and biomarkers in neurology and psychiatry. Proteomics-Clin Appl 9(9–10):899–906

    Article  CAS  PubMed  Google Scholar 

  10. Woods AG, Sokolowska I, Darie CC (2012) Identification of consistent alkylation of cysteine-less peptides in a proteomics experiment. Biochem Biophys Res Commun 419(2):305–308

    Article  CAS  PubMed  Google Scholar 

  11. Woods AG, Sokolowska I, Taurines R, Gerlach M, Dudley E, Thome J, Darie CC (2012) Potential biomarkers in psychiatry: focus on the cholesterol system. J Cell Mol Med 16(6):1184–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woods AG, Wetie AGN, Sokolowska I, Russell S, Ryan JP, Michel TM et al (2013) Mass spectrometry as a tool for studying autism spectrum disorder. J Mol Psychiatr 1(1):6

    Article  Google Scholar 

  13. Corbett B, Kantor A, Schulman H, Walker W, Lit L, Ashwood P et al (2007) A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mole Psychiatr 12(3):292

    Article  CAS  Google Scholar 

  14. Momeni N, Bergquist J, Brudin L, Behnia F, Sivberg B, Joghataei M, Persson BL (2012) A novel blood-based biomarker for detection of autism spectrum disorders. Transl Psychiatry 2(3):e91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Momeni N, Brudin L, Behnia F, Nordström B, Yosefi-Oudarji A, Sivberg B, L. et al (2012) High complement factor I activity in the plasma of children with autism spectrum disorders. Autism Res Treat. https://doi.org/10.1155/2012/868576

    Article  PubMed  Google Scholar 

  16. Ngounou Wetie AG, Wormwood KL, Charette L, Ryan JP, Woods AG, Darie CC (2015) Comparative two-dimensional polyacrylamide gel electrophoresis of the salivary proteome of children with autism spectrum disorder. J Cell Mol Med 19(11):2664–2678. https://doi.org/10.1111/jcmm.12658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ngounou Wetie AG, Wormwood KL, Russell S, Ryan JP, Darie CC, Woods AG (2015) A pilot proteomic analysis of salivary biomarkers in autism spectrum disorder. Autism Res 8(3):338–350

    Article  PubMed  Google Scholar 

  18. Loo JA, Yan W, Ramachandran P, Wong DT (2010) Comparative human salivary and plasma proteomes. J Dent Res 89(10):1016–1023. https://doi.org/10.1177/0022034510380414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vitorino R (2018) Digging deep into peptidomics applied to body fluids. Proteomics. https://doi.org/10.1002/pmic.201700401

    Article  PubMed  Google Scholar 

  20. Ngounou Wetie AG, Wormwood K, Thome J, Dudley E, Taurines R, Gerlach M et al (2014) A pilot proteomic study of protein markers in autism spectrum disorder. Electrophoresis 35(14):2046–2054

    Article  CAS  PubMed  Google Scholar 

  21. Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC et al (2000) The autism diagnostic observation schedule—generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30(3):205–223

    Article  CAS  PubMed  Google Scholar 

  22. Wormwood KL, Wetie AG, Gomez MV, Ju Y, Kowalski P, Mihasan M, Darie CC (2018) Structural characterization and disulfide assignment of spider peptide Phα1β by mass spectrometry. J Am Soc Mass Spectrom. https://doi.org/10.1007/s13361-018-1904-3

    Article  PubMed  Google Scholar 

  23. Darie CC, Deinhardt K, Zhang G, Cardasis HS, Chao MV, Neubert TA (2011) Identifying transient protein-protein interactions in EphB2 signaling by blue native PAGE and mass spectrometry. Proteomics 11(23):4514–4528. https://doi.org/10.1002/pmic.201000819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sokolowska I, Dorobantu C, Woods AG, Macovei A, Branza-Nichita N, Darie CC (2012) Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Science 10:47–47. https://doi.org/10.1186/1477-5956-10-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spellman DS, Deinhardt K, Darie CC, Chao MV, Neubert TA (2008) Stable isotopic labeling by amino acids in cultured primary neurons: application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Mol Cell Proteomics 7(6):1067–1076. https://doi.org/10.1074/mcp.M700387-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakayasu ES, Gritsenko M, Piehowski PD, Gao Y, Orton DJ, Schepmoes AA et al (2021) Tutorial: best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat Protoc 16(8):3737–3760. https://doi.org/10.1038/s41596-021-00566-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Woof JM, Kerr MA (2006) The function of immunoglobulin A in immunity. J Pathol 208(2):270–282

    Article  CAS  PubMed  Google Scholar 

  28. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA (2011) Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol 11(22):11–22

    Google Scholar 

  29. Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125(2 Suppl 2):S41-52. https://doi.org/10.1016/j.jaci.2009.09.046

    Article  PubMed  PubMed Central  Google Scholar 

  30. Heuer L, Ashwood P, Schauer J, Goines P, Krakowiak P, Hertz-Picciotto I et al (2008) Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms. Autism Res 1(5):275–283. https://doi.org/10.1002/aur.42

    Article  PubMed  PubMed Central  Google Scholar 

  31. Warren RP, Odell JD, Warren WL, Burger RA, Maciulis A, Daniels WW, Torres AR (1997) Brief report: immunoglobulin a deficiency in a subset of autistic subjects. J Autism Dev Disord 27(2):187–192. https://doi.org/10.1023/a:1025895925178

    Article  CAS  PubMed  Google Scholar 

  32. Dixon FJ, Kunkel HG (1967) Advances in immunology. Elsevier Science, Amsterdam

    Google Scholar 

  33. Bengten E, Wilson M, Miller N, Clem L, Pilström L, Warr G (2000) Immunoglobulin isotypes: structure, function, and genetics. Origin and evolution of the vertebrate immune system. Springer, Berlin, pp 189–219

    Chapter  Google Scholar 

  34. Heo S-M, Lee S, Wang H, Jeong JH, Oh SW (2016) Levels of common salivary protein 1 in healthy subjects and periodontal patients. J Periodontal Implant Sci 46(5):320–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Manchenko GP (2002) Handbook of detection of enzymes on electrophoretic gels. CRC Press, Boca Raton

    Book  Google Scholar 

  36. Braunschweig D, Krakowiak P, Duncanson P, Boyce R, Hansen R, Ashwood P et al (2013) Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatr 3(7):e277

    Article  CAS  Google Scholar 

  37. Gesundheit B, Rosenzweig JP, Naor D, Lerer B, Zachor DA, Procházka V et al (2013) Immunological and autoimmune considerations of autism spectrum disorders. J Autoimmun 44:1–7

    Article  CAS  PubMed  Google Scholar 

  38. Rossignol DA, Frye RE (2012) A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 17(4):389

    Article  CAS  PubMed  Google Scholar 

  39. Dasgupta A, Chakraborty R, Saha B, Suri H, Singh P, Raj A et al (2021) Sputum protein biomarkers in airway diseases: a pilot study. Int J Chron Obstruct Pulmon Dis 16:2203–2215. https://doi.org/10.2147/COPD.S306035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herrera JA, Dingle LA, Monetero MA, Venkateswaran RV, Blaikley JF, Granato F, Thornton DJ (2023) Morphologically intact airways in lung fibrosis have an abnormal proteome. Respir Res 24(1):99. https://doi.org/10.1186/s12931-023-02400-x

    Article  PubMed  PubMed Central  Google Scholar 

  41. Herrera JJ, Pifer K, Louzon S, Leander D, Fiehn O, Day SM et al (2023) Early or Late-Life Treatment With Acarbose or Rapamycin Improves Physical Performance and Affects Cardiac Structure in Aging Mice. J Gerontol A Biol Sci Med Sci. https://doi.org/10.1093/gerona/glac221

    Article  PubMed  Google Scholar 

  42. Li J, Xu P, Wang L, Feng M, Chen D, Yu X, Lu Y (2020) Molecular biology of BPIFB1 and its advances in disease. Ann Transl Med 8(10):651. https://doi.org/10.21037/atm-20-3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garland AL, Walton WG, Coakley RD, Tan CD, Gilmore RC, Hobbs CA et al (2013) Molecular basis for pH-dependent mucosal dehydration in cystic fibrosis airways. Proc National Acad Sci 110(40):15973–15978

    Article  CAS  Google Scholar 

  44. Lindahl M, Ståhlbom B, Tagesson C (2001) Identification of a new potential airway irritation marker, palate lung nasal epithelial clone protein, in human nasal lavage fluid with two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight. Electrophoresis 22(9):1795–1800

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y, Bartlett JA, Di ME, Bomberger JM, Chan YR, Gakhar L et al (2013) SPLUNC1/BPIFA1 contributes to pulmonary host defense against Klebsiella pneumoniae respiratory infection. Am J Pathol 182(5):1519–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sayeed S, Nistico L, St Croix C, Di YP (2013) Multifunctional role of human SPLUNC1 in Pseudomonas aeruginosa infection. Infect Immun 81(1):285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Anwar A, Abruzzo PM, Pasha S, Rajpoot K, Bolotta A, Ghezzo A et al (2018) Advanced glycation endproducts, dityrosine and arginine transporter dysfunction in autism-a source of biomarkers for clinical diagnosis. Molecular Autism 9(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  48. Noriega DB, Savelkoul HF (2014) Immune dysregulation in autism spectrum disorder. Eur J Pediatr 173(1):33–43

    Article  CAS  PubMed  Google Scholar 

  49. Theoharides TC (2013) Is a subtype of autism an allergy of the brain? Clin Ther 35(5):584–591

    Article  CAS  PubMed  Google Scholar 

  50. Davies JR, Herrmann A, Russell W, Svitacheva N, Wickström C, Carlstedt I (2002) Respiratory tract mucins: structure and expression patterns. Mucus Hypersecretion Respir Dis. https://doi.org/10.1002/0470860790.ch6

    Article  Google Scholar 

  51. Hovenberg HW, Davies JR, Carlstedt I (1996) Different mucins are produced by the surface epithelium and the submucosa in human trachea: identification of MUC5AC as a major mucin from the goblet cells. Biochemical Journal 318(Pt 1):319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sinha J, Cao Z, Dai J, Tang H, Partyka K, Hostetter G et al (2016) A gastric glycoform of MUC5AC is a biomarker of mucinous cysts of the pancreas. PLoS ONE. https://doi.org/10.1371/journal.pone.0167070

    Article  PubMed  PubMed Central  Google Scholar 

  53. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318(Pt 1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bernal J, Guadaño-Ferraz A, Morte B (2003) Perspectives in the study of thyroid hormone action on brain development and function. Thyroid 13(11):1005–1012

    Article  CAS  PubMed  Google Scholar 

  55. Suk K (2016) Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective. Prog Neurobiol 144:158–172

    Article  CAS  PubMed  Google Scholar 

  56. Baker EN, Baker HM, Kidd RD (2002) Lactoferrin and transferrin: functional variations on a common structural framework. Biochem Cell Biol 80(1):27–34. https://doi.org/10.1139/o01-153

    Article  CAS  PubMed  Google Scholar 

  57. Chung M (1984) Structure and function of transferrin. Biochem Mol Biol Educ 12(4):146–154

    CAS  Google Scholar 

  58. Wally J, Buchanan SK (2007) A structural comparison of human serum transferrin and human lactoferrin. Biometals 20(3–4):249–262. https://doi.org/10.1007/s10534-006-9062-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mazurier J, Metz-Boutigue M-H, Jolles J, Spik G, Montreuil J, Jolles P (1983) Human lactotransferrin: molecular, functional and evolutionary comparisons with human serum transferrin and hen ovotransferrin. Experientia 39(2):135–141

    Article  CAS  PubMed  Google Scholar 

  60. Chauhan A, Chauhan V, Brown WT, Cohen I (2004) Oxidative stress in autism: Increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin-the antioxidant proteins. Life Sci 75(21):2539–2549

    Article  CAS  PubMed  Google Scholar 

  61. Castagnola M, Messana I, Inzitari R, Fanali C, Cabras T, Morelli A, a. (2008) Hypo-phosphorylation of salivary peptidome as a clue to the molecular pathogenesis of autism spectrum disorders. J Proteome Res 7(12):5327–5332

    Article  CAS  PubMed  Google Scholar 

  62. Antohe F, Dobrila L, Heltianu C, Simionescu N, Simionescu M (1993) Albumin-binding proteins function in the receptor-mediated binding and transcytosis of albumin across cultured endothelial cells. Eur J Cell Biol 60(2):268–275

    CAS  PubMed  Google Scholar 

  63. Abdolhosseini M, Sotsky JB, Shelar AP, Joyce PB, Gorr S-U (2012) Human parotid secretory protein is a lipopolysaccharide-binding protein: identification of an anti-inflammatory peptide domain. Mol Cell Biochem 359(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  64. Autism, & Investigators, D. D. M. N. S. Y. P (2014) Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010. Morb Mortal Wkly Rep Recomm Rep 63(2):1–21

    Google Scholar 

  65. Schwarz E, Guest PC, Rahmoune H, Wang L, Levin Y, Ingudomnukul E (2011) Sex-specific serum biomarker patterns in adults with Asperger’s syndrome. Mol Psychiatr 16(12):1213

    Article  CAS  Google Scholar 

  66. Steeb H, Ramsey JM, Guest PC, Stocki P, Cooper JD, Rahmoune H et al (2014) Serum proteomic analysis identifies sex-specific differences in lipid metabolism and inflammation profiles in adults diagnosed with Asperger syndrome. Mol Autism 5(1):4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

KLW was supported by the David A. Walsh Fellowship, and the ASPIRE Fellowship Program at Clarkson University. The authors thank the donors and their families for their participation in this study. The authors have no conflicts of interest. No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

AGW, JR, LC, CCD & KL designed the project. AGW, KL, CCD, JR & LC completed the research project. KL, CCD & AGW wrote the initial draft manuscript. AGW, JR, LC, CCD & KL updated the draft manuscript.

Corresponding author

Correspondence to Costel C. Darie.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wormwood, K.L., Charette, L., Ryan, J.P. et al. A Proteomics Investigation of Salivary Profiles as Potential Biomarkers for Autism Spectrum Disorder (ASD). Protein J 42, 607–620 (2023). https://doi.org/10.1007/s10930-023-10146-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10146-0

Keywords

Navigation