Skip to main content
Log in

Propensities of Some Amino Acid Pairings in α-Helices Vary with Length

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The results of secondary structure prediction methods are widely used in applications in biotechnology and bioinformatics. However, the accuracy limit of these methods could be improved up to 92%. One approach to achieve this goal is to harvest information from the primary structure of the peptide. This study aims to contribute to this goal by investigating the variations in propensity of amino acid pairings to α-helices in globular proteins depending on helix length. (n):(n + 4) residue pairings were determined using a comprehensive peptide data set according to backbone hydrogen bond criterion which states that backbone hydrogen bond is the dominant driving force of protein folding. Helix length is limited to 13 to 26 residues. Findings of this study show that propensities of ALA:GLY and GLY:GLU pairings to α-helix in globular protein increase with increasing helix length but of ALA:ALA and ALA:VAL decrease. While the frequencies of ILE:ALA, LEU:ALA, LEU:GLN, LEU:GLU, LEU:LEU, MET:ILE and VAL:LEU pairings remain roughly constant with length, the 25 residue pairings have varying propensities in narrow helix lengths. The remaining pairings have no prominent propensity to α-helices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information Files).

References

  1. Chou PY, Fasman GD (1974) Prediction of protein conformation. Biochemistry 13(2):222–245

    Article  CAS  PubMed  Google Scholar 

  2. Deleage G, Roux B (1987) An algorithm for protein secondary structure prediction based on class prediction. Protein Eng 1(4):289–294

    Article  CAS  PubMed  Google Scholar 

  3. Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23(4):566–579

    Article  CAS  PubMed  Google Scholar 

  4. Garnier J, Gibrat JF, Robson B (1996) GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266:540–553

    Article  CAS  PubMed  Google Scholar 

  5. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684

    CAS  PubMed  Google Scholar 

  6. Gibrat JF, Garnier J, Robson B (1987) Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J Mol Biol 198(3):425–443

    Article  CAS  PubMed  Google Scholar 

  7. Guermeur Y, Geourjon C, Gallinari P, Deleage G (1999) Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics 15(5):413–421

    Article  CAS  PubMed  Google Scholar 

  8. King RD, Sternberg MJ (1996) Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 5(11):2298–2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Levin JM, Robson B, Garnier J (1986) An algorithm for secondary structure determination in proteins based on sequence similarity. FEBS Lett 205(2):303–308

    Article  CAS  PubMed  Google Scholar 

  10. Rost B, Sander C (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19(1):55–72

    Article  CAS  PubMed  Google Scholar 

  11. Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120(1):97–120

    Article  CAS  PubMed  Google Scholar 

  12. Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43(W1):W389–W394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bernhofer M, Dallago C, Karl T, Satagopam V, Heinzinger M, Littmann M et al (2021) PredictProtein—predicting protein structure and function for 29 years. Nucleic Acids Res 49(W1):W535–W540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292(2):195–202

    Article  CAS  PubMed  Google Scholar 

  15. Zvelebil MJ, Barton GJ, Taylor WR, Sternberg MJ (1987) Prediction of protein secondary structure and active sites using the alignment of homologous sequences. J Mol Biol 195(4):957–961

    Article  CAS  PubMed  Google Scholar 

  16. Salamov AA, Solovyev VV (1995) Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J Mol Biol 247(1):11–15

    Article  CAS  PubMed  Google Scholar 

  17. Wako H, Blundell TL (1994) Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. II. Secondary structures. J Mol Biol 238(5):693–708

    Article  CAS  PubMed  Google Scholar 

  18. Mehta PK, Heringa J, Argos P (1995) A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%. Protein Sci 4(12):2517–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haber E, Anfinsen CB (1961) Regeneration of enzyme activity by air oxidation of reduced subtilisin-modified ribonuclease. J Biol Chem 236:422–424

    Article  CAS  PubMed  Google Scholar 

  20. Pirovano W, Heringa J (2010) Protein secondary structure prediction. Methods Mol Biol 609:327–348

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, Yang Y, Zhan J, Dai L, Zhou Y (2013) Energy functions in de novo protein design: current challenges and future prospects. Annu Rev Biophys 42:315–335

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y, Gao J, Wang J, Heffernan R, Hanson J, Paliwal K et al (2018) Sixty-five years of the long march in protein secondary structure prediction: the final stretch? Brief Bioinform 19(3):482–494

    CAS  PubMed  Google Scholar 

  23. Ho CT, Huang YW, Chen TR, Lo CH, Lo WC (2021) Discovering the ultimate limits of protein secondary structure prediction. Biomolecules 11(11):1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wardah W, Khan MGM, Sharma A, Rashid MA (2019) Protein secondary structure prediction using neural networks and deep learning: a review. Comput Biol Chem 81:1–8

    Article  CAS  PubMed  Google Scholar 

  25. Rost B (2001) Review: protein secondary structure prediction continues to rise. J Struct Biol 134(2–3):204–218

    Article  CAS  PubMed  Google Scholar 

  26. de Sousa MM, Munteanu CR, Pazos A, Fonseca NA, Camacho R, Magalhaes AL (2011) Amino acid pair- and triplet-wise groupings in the interior of alpha-helical segments in proteins. J Theor Biol 271(1):136–144

    Article  PubMed  Google Scholar 

  27. Frishman D, Argos P (1996) Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng 9(2):133–142

    Article  CAS  PubMed  Google Scholar 

  28. Fonseca NA, Camacho R, Magalhaes AL (2008) Amino acid pairing at the N- and C-termini of helical segments in proteins. Proteins 70(1):188–196

    Article  CAS  PubMed  Google Scholar 

  29. Acevedo OE, Lareo LR (2005) Amino acid propensities revisited. OMICS 9(4):391–399

    Article  CAS  PubMed  Google Scholar 

  30. Chakrabartty A, Baldwin RL (1995) Stability of alpha-helices. Adv Protein Chem 46:141–176

    Article  CAS  PubMed  Google Scholar 

  31. Chakrabartty A, Kortemme T, Baldwin RL (1994) Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci 3(5):843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Creamer TP, Rose GD (1992) Side-chain entropy opposes alpha-helix formation but rationalizes experimentally determined helix-forming propensities. Proc Natl Acad Sci USA 89(13):5937–5941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Engel DE, DeGrado WF (2004) Amino acid propensities are position-dependent throughout the length of alpha-helices. J Mol Biol 337(5):1195–1205

    Article  CAS  PubMed  Google Scholar 

  34. Horovitz A, Matthews JM, Fersht AR (1992) Alpha-helix stability in proteins. II. Factors that influence stability at an internal position. J Mol Biol 227(2):560–568

    Article  CAS  PubMed  Google Scholar 

  35. Pace CN, Scholtz JM (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75(1):422–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Serrano L, Sancho J, Hirshberg M, Fersht AR (1992) Alpha-helix stability in proteins. I. Empirical correlations concerning substitution of side-chains at the N and C-caps and the replacement of alanine by glycine or serine at solvent-exposed surfaces. J Mol Biol 227(2):544–559

    Article  CAS  PubMed  Google Scholar 

  37. Sundaralingam M, Sekharudu YC, Yathindra N, Ravichandran V (1987) Ion-pairs in alpha-helices. Proteins Struct Funct Genet 2(1):64–71

    Article  CAS  PubMed  Google Scholar 

  38. Best RB, de Sancho D, Mittal J (2012) Residue-specific alpha-helix propensities from molecular simulation. Biophys J 102(6):1462–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rohl CA, Fiori W, Baldwin RL (1999) Alanine is helix-stabilizing in both template-nucleated and standard peptide helices. Proc Natl Acad Sci USA 96(7):3682–3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nacar C (2020) Propensities of amino acid pairings in secondary structure of globular proteins. Protein J 39(1):21–32

    Article  CAS  PubMed  Google Scholar 

  41. Bruch MD, Dhingra MM, Gierasch LM (1991) Side chain-backbone hydrogen bonding contributes to helix stability in peptides derived from an alpha-helical region of carboxypeptidase A. Proteins 10(2):130–139

    Article  CAS  PubMed  Google Scholar 

  42. Presta LG, Rose GD (1988) Helix signals in proteins. Science 240(4859):1632–1641

    Article  CAS  PubMed  Google Scholar 

  43. Rose GD, Fleming PJ, Banavar JR, Maritan A (2006) A backbone-based theory of protein folding. Proc Natl Acad Sci USA 103(45):16623–16633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang J, Feng JA (2003) Exploring the sequence patterns in the alpha-helices of proteins. Protein Eng 16(11):799–807

    Article  CAS  PubMed  Google Scholar 

  45. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10(12):980

    Article  CAS  PubMed  Google Scholar 

  46. Baker EN, Hubbard RE (1984) Hydrogen bonding in globular proteins. Prog Biophys Mol Biol 44(2):97–179

    Article  CAS  PubMed  Google Scholar 

  47. Richardson JS, Richardson DC (1988) Amino acid preferences for specific locations at the ends of alpha helices. Science 240(4859):1648–1652

    Article  CAS  PubMed  Google Scholar 

  48. Serrano L, Fersht AR (1989) Capping and alpha-helix stability. Nature 342(6247):296–299

    Article  CAS  PubMed  Google Scholar 

  49. Kumar S, Bansal M (1996) Structural and sequence characteristics of long alpha helices in globular proteins. Biophys J 71(3):1574–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Makhatadze GI (2005) Thermodynamics of alpha-helix formation. Adv Protein Chem 72:199–226

    Article  PubMed  Google Scholar 

  51. Murphy KP, Freire E (1992) Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem 43:313–361

    Article  CAS  PubMed  Google Scholar 

  52. Aurora R, Creamer TP, Srinivasan R, Rose GD (1997) Local interactions in protein folding: lessons from the alpha-helix. J Biol Chem 272(3):1413–1416

    Article  CAS  PubMed  Google Scholar 

  53. Munoz V, Serrano L (1995) Helix design, prediction and stability. Curr Opin Biotechnol 6(4):382–386

    Article  CAS  PubMed  Google Scholar 

  54. Baldwin RL (2003) In search of the energetic role of peptide hydrogen bonds. J Biol Chem 278(20):17581–17588

    Article  CAS  PubMed  Google Scholar 

  55. Guo H, Karplus M (1994) Solvent influence on the stability of the peptide hydrogen-bond—a supramolecular cooperative effect. J Phys Chem US 98(29):7104–7105

    Article  CAS  Google Scholar 

  56. Ireta J, Neugebauer J, Scheffler M, Rojo A, Galvan M (2003) Density functional theory study of the cooperativity of hydrogen bonds in finite and infinite alpha-helices. J Phys Chem B 107(6):1432–1437

    Article  CAS  Google Scholar 

  57. Rossi M, Scheffler M, Blum V (2013) Impact of vibrational entropy on the stability of unsolvated peptide helices with increasing length. J Phys Chem B 117(18):5574–5584

    Article  CAS  PubMed  Google Scholar 

  58. Tkatchenko A, Rossi M, Blum V, Ireta J, Scheffler M (2011) Unraveling the stability of polypeptide helices: critical role of van der Waals Interactions. Phys Rev Lett 106(11):118102

    Article  PubMed  Google Scholar 

  59. Wieczorek R, Dannenberg JJ (2004) Comparison of fully optimized alpha- and 3(10)-helices with extended beta-strands. An ONIOM density functional theory study. J Am Chem Soc 126(43):14198–14205

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cevdet Nacar.

Ethics declarations

Conflict of interest

Author declares that he has no conflicts of interest.

Ethical Approval

This article does not contain any studies with human or animal participants by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nacar, C. Propensities of Some Amino Acid Pairings in α-Helices Vary with Length. Protein J 41, 551–562 (2022). https://doi.org/10.1007/s10930-022-10076-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-022-10076-3

Keywords

Navigation