Skip to main content

Advertisement

Log in

Label-Free Method Development for Hydroxyproline PTM Mapping in Human Plasma Proteome

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Post-translational modifications (PTMs) impart structural heterogeneities that can alter plasma proteins' functions in various pathophysiological processes. However, the identification and mapping of PTMs in untargeted plasma proteomics is still a challenge due to the presence of diverse components in blood. Here, we report a label-free method for identifying and mapping hydroxylated proteins using tandem mass spectrometry (MS/MS) in the human plasma sample. Our untargeted proteomics approach led us to identify 676 de novo sequenced peptides in human plasma that correspond to 201 proteins, out of which 11 plasma proteins were found to be hydroxylated. Among these hydroxylated proteins, Immunoglobulin A1 (IgA1) heavy chain was found to be modified at residue 285 (Pro285 to Hyp285), which was further validated by MS/MS study. Molecular dynamics (MD) simulation analysis demonstrated that this proline hydroxylation in IgA1 caused both local and global structural changes. Overall, this study provides a comprehensive understanding of the protein profile containing Hyp PTMs in human plasma and shows the future perspective of identifying and discriminating Hyp PTM in the normal and the diseased proteomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Y-C, Peterson SE, Loring JF (2014) Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res 24:143–160. https://doi.org/10.1038/cr.2013.151

    Article  CAS  PubMed  Google Scholar 

  2. Duan G, Walther D (2015) The roles of post-translational modifications in the context of protein interaction networks. PLoS Comput Biol 11:e1004049. https://doi.org/10.1371/journal.pcbi.1004049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murn J, Shi Y (2017) The winding path of protein methylation research: milestones and new frontiers. Nat Rev Mol Cell Biol 18:517–527. https://doi.org/10.1038/nrm.2017.35

    Article  CAS  PubMed  Google Scholar 

  4. Yang X, Qian K (2017) Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 18:452–465

    Article  CAS  Google Scholar 

  5. Jefferis R (2016) Posttranslational modifications and the immunogenicity of biotherapeutics. J Immunol Res. https://doi.org/10.1155/2016/5358272

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rape M (2018) Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol 19:59–70. https://doi.org/10.1038/nrm.2017.83

    Article  CAS  PubMed  Google Scholar 

  7. Csizmok V, Forman-Kay JD (2018) Complex regulatory mechanisms mediated by the interplay of multiple post-translational modifications. Curr Opin Struct Biol 48:58–67

    Article  CAS  Google Scholar 

  8. Perchey RT, Tonini L, Tosolini M et al (2019) PTMselect: optimization of protein modifications discovery by mass spectrometry. Sci Rep 9:1–7. https://doi.org/10.1038/s41598-019-40873-3

    Article  CAS  Google Scholar 

  9. Audain E, Uszkoreit J, Sachsenberg T et al (2017) In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics. J Proteom 150:170–182. https://doi.org/10.1016/j.jprot.2016.08.002

    Article  CAS  Google Scholar 

  10. Uszkoreit J, Perez-Riverol Y, Eggers B et al (2019) Protein inference using PIA workflows and PSI standard file formats. J Proteome Res 18:741–747. https://doi.org/10.1021/acs.jproteome.8b00723

    Article  CAS  PubMed  Google Scholar 

  11. Malmström E, Kilsgård O, Hauri S et al (2016) Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics. Nat Commun 7:10261. https://doi.org/10.1038/ncomms10261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Popov IA, Starodubtseva NL, Indeikina MI et al (2013) Mass spectrometric identification of posttranslational modifications in transthyretin from human blood. Mol Biol 47:885–893. https://doi.org/10.1134/S0026893313060125

    Article  CAS  Google Scholar 

  13. Vicente Miranda H, Cássio R, Correia-Guedes L et al (2017) Posttranslational modifications of blood-derived alpha-synuclein as biochemical markers for Parkinson’s disease. Sci Rep 7:13713. https://doi.org/10.1038/s41598-017-14175-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hansson K, Stenflo J (2005) Post-translational modifications in proteins involved in blood coagulation. J Thromb Haemost 3:2633–2648. https://doi.org/10.1111/j.1538-7836.2005.01478.x

    Article  CAS  PubMed  Google Scholar 

  15. Mattu TS, Pleass RJ, Willis AC et al (1998) The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J Biol Chem 273:2260–2272. https://doi.org/10.1074/jbc.273.4.2260

    Article  CAS  PubMed  Google Scholar 

  16. Liu D, Ren D, Huang H et al (2008) Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Biochemistry 47:5088–5100. https://doi.org/10.1021/bi702238b

    Article  CAS  PubMed  Google Scholar 

  17. Hmiel LK, Brorson KA, Boyne MT (2015) Post-translational structural modifications of immunoglobulin G and their effect on biological activity. Anal Bioanal Chem 407:79–94. https://doi.org/10.1007/s00216-014-8108-x

    Article  CAS  PubMed  Google Scholar 

  18. Bozic B, Cucnik S, Kveder T, Rozman B (2006) Changes in avidity and specificity of IgG during electro-oxidation. Relevance of binding of antibodies to beta2-GPI. Autoimmun Rev 6:28–32. https://doi.org/10.1016/j.autrev.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  19. Ono M, Matsubara J, Honda K et al (2009) Prolyl 4-hydroxylation of α-fibrinogen. A novel protein modification revealed by plasma proteomics. J Biol Chem 284:29041–29049. https://doi.org/10.1074/jbc.M109.041749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hijazi M, Velasquez SM, Jamet E et al (2014) An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture. Front Plant Sci 5:395. https://doi.org/10.3389/fpls.2014.00395

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kiriakidis S, Hoer SS, Burrows N et al (2017) Complement C1q is hydroxylated by collagen prolyl 4 hydroxylase and is sensitive to off-target inhibition by prolyl hydroxylase domain inhibitors that stabilize hypoxia-inducible factor. Kidney Int 92:900–908. https://doi.org/10.1016/j.kint.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bag S, Dutta D, Chaudhary A et al (2018) Identification of α-enolase as a prognostic and diagnostic precancer biomarker in oral submucous fibrosis. J Clin Pathol 71:228–238. https://doi.org/10.1136/jclinpath-2017-204430

    Article  CAS  PubMed  Google Scholar 

  23. Dutta D, Mukherjee D, Mukherjee IA et al (2020) Staphylococcal superantigen-like proteins interact with human MAP kinase signaling protein ERK2. FEBS Lett 594:266–277. https://doi.org/10.1002/1873-3468.13590

    Article  CAS  PubMed  Google Scholar 

  24. Suckau D, Resemann A, Schuerenberg M et al (2003) A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal Bioanal Chem 376:952–965. https://doi.org/10.1007/s00216-003-2057-0

    Article  CAS  PubMed  Google Scholar 

  25. Shi SP, Chen X, Xu HD, Qiu JD (2015) PredHydroxy: computational prediction of protein hydroxylation site locations based on the primary structure. Mol Biosyst 11:819–825. https://doi.org/10.1039/c4mb00646a

    Article  CAS  PubMed  Google Scholar 

  26. Xu Y, Wen X, Shao XJ et al (2014) iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int J Mol Sci 15:7594–7610. https://doi.org/10.3390/ijms15057594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Margreitter C, Petrov D, Zagrovic B (2013) Vienna-PTM web server: a toolkit for MD simulations of protein post-translational modifications. Nucleic Acids Res 41:W422–W426. https://doi.org/10.1093/nar/gkt416

    Article  PubMed  PubMed Central  Google Scholar 

  28. Abraham MJ, Murtola T, Schulz R et al (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  29. Schmid N, Eichenberger AP, Choutko A et al (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856. https://doi.org/10.1007/s00249-011-0700-9

    Article  CAS  PubMed  Google Scholar 

  30. Zielkiewicz J (2005) Structural properties of water: comparison of the SPC, SPCE, TIP4P, and TIP5P models of water. J Chem Phys 123:104501. https://doi.org/10.1063/1.2018637

    Article  CAS  PubMed  Google Scholar 

  31. Martinez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164. https://doi.org/10.1002/jcc.21224

    Article  CAS  PubMed  Google Scholar 

  32. Childers MC, Daggett V (2018) Validating molecular dynamics simulations against experimental observables in light of underlying conformational ensembles. J Phys Chem B 122:6673–6689. https://doi.org/10.1021/acs.jpcb.8b02144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wines BD, Ramsland PA, Trist HM et al (2011) Interaction of human, rat, and mouse immunoglobulin A (IgA) with staphylococcal superantigen-like 7 (SSL7) decoy protein and leukocyte IgA receptor. J Biol Chem 286:33118–33124. https://doi.org/10.1074/jbc.M111.272252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramsland PA, Willoughby N, Trist HM et al (2007) Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1. Proc Natl Acad Sci USA 104:1–6. https://doi.org/10.1073/pnas.0706028104

    Article  CAS  Google Scholar 

  35. Laursen NS, Gordon N, Hermans S et al (2010) Structural basis for inhibition of complement C5 by the SSL7 protein from Staphylococcus aureus. Proc Natl Acad Sci 107:3681–3686. https://doi.org/10.1073/pnas.0910565107

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lorenz N, Clow F, Radcliff FJ, Fraser JD (2013) Full functional activity of SSL7 requires binding of both complement C5 and IgA. Immunol Cell Biol 91:469–476. https://doi.org/10.1038/icb.2013.28

    Article  CAS  PubMed  Google Scholar 

  37. Ignjatovic V, Geyer PE, Palaniappan KK et al (2019) Mass spectrometry-based plasma proteomics: considerations from sample collection to achieving translational data. J Proteome Res 18:4085–4097

    Article  CAS  Google Scholar 

  38. Rogozhin E, Zalevsky A, Mikov A et al (2018) Characterization of hydroxyproline-containing hairpin-like antimicrobial peptide ecamp1-hyp from barnyard grass (Echinochloa crusgalli L.) seeds: Structural identification and comparative analysis of antifungal activity. Int J Mol Sci. https://doi.org/10.3390/ijms19113449

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lehoux S, Mi R, Aryal RP et al (2014) Identification of distinct glycoforms of IgA1 in plasma from patients with immunoglobulin a (IgA) nephropathy and healthy individuals. Mol Cell Proteom 13:3097–3113. https://doi.org/10.1074/mcp.M114.039693

    Article  CAS  Google Scholar 

  40. InksterShekman MLA, Ahmed P et al (1984) Preservation of antithrombin 111 activity in stored whole blood. Transfusion 24:57–59. https://doi.org/10.1046/j.1537-2995.1984.24184122563.x

    Article  Google Scholar 

  41. Rosas-Díaz M, Camarillo-Cadena M, Hernández-Arana A et al (2015) Antioxidant capacity and structural changes of human serum albumin from patients in advanced stages of diabetic nephropathy and the effect of the dialysis. Mol Cell Biochem 404:193–201. https://doi.org/10.1007/s11010-015-2378-2

    Article  CAS  PubMed  Google Scholar 

  42. Naderi Ghale-Noie Z, Hassani M, Kachooei AR, Kerachian MA (2018) High serum alpha-2-macroglobulin level in patients with osteonecrosis of the femoral head. Mashhad University of Medical Sciences, Mashhad

    Google Scholar 

  43. Chavakis T, Boeckel N, Santoso S et al (2002) Inhibition of platelet adhesion and aggregation by a defined region (Gly-486-Lys-502) of high molecular weight kininogen. J Biol Chem 277:23157–23164. https://doi.org/10.1074/jbc.M202529200

    Article  CAS  PubMed  Google Scholar 

  44. Smith A, McCulloh RJ (2015) Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front Physiol 6:187

    Article  Google Scholar 

  45. Ofori-Acquah SF, Hazra R, Orikogbo OO et al (2020) Hemopexin deficiency promotes acute kidney injury in sickle cell disease. Blood 135:1044–1048. https://doi.org/10.1182/blood.2019002653

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol. https://doi.org/10.3389/fimmu.2014.00520

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khodoun MV, Strait R, Armstrong L et al (2011) Identification of markers that distinguish IgE- from IgG-mediated anaphylaxis. Proc Natl Acad Sci USA 108:12413–12418. https://doi.org/10.1073/pnas.1105695108

    Article  PubMed  PubMed Central  Google Scholar 

  48. Leung LL, Shao Z, Nishimura T et al (2016) Deficiency of either carboxypeptidase B2 or carboxypeptidase N exacerbated disease activity in a mouse model of hemolytic uremic syndrome. Blood 128:3758–3758. https://doi.org/10.1182/blood.v128.22.3758.3758

    Article  Google Scholar 

  49. Michaud N, Al-Akoum M, Akoum A (2014) Blood soluble interleukin 1 receptor accessory protein levels are consistently low throughout the menstrual cycle of women with endometriosis. Reprod Biol Endocrinol 12:51. https://doi.org/10.1186/1477-7827-12-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bozaoglu K, Attard C, Kulkarni H et al (2014) Plasma levels of soluble interleukin 1 receptor accessory protein are reduced in obesity. J Clin Endocrinol Metab 99:3435–3443. https://doi.org/10.1210/jc.2013-4475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Monte AA, Sun H, Rapp-Olsson AM et al (2018) The plasma concentration of MUC5B is associated with clinical outcomes in paraquat-poisoned patients. Am J Respir Crit Care Med 197:663–665

    Article  CAS  Google Scholar 

  52. Wyczałkowska-Tomasik A, Paczek L (2012) Cathepsin B and L activity in the serum during the human aging process. Cathepsin B and L in aging. Arch Gerontol Geriatr 55:735–738. https://doi.org/10.1016/j.archger.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  53. Zhong Y, Zhao J, Gu YJ et al (2015) Differential levels of cathepsin B and L in serum between young and aged healthy people and their association with matrix metalloproteinase 2. Arch Gerontol Geriatr 61:285–288. https://doi.org/10.1016/j.archger.2015.04.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work has been carried out with financial assistance from the Science and Engineering Research Board, Government of India (GOI), File No. EMR/2016/002825. The authors acknowledge the Central Research Facility (CRF) of the Indian Institute of Technology Kharagpur (IIT Kgp) for establishing the MALDI facility. The authors acknowledge Rituparna Saha for correcting the manuscript. Debabrata, Gourab, and Shakilur thank IIT Kgp for individual fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, D., Rahman, S., Bhattacharje, G. et al. Label-Free Method Development for Hydroxyproline PTM Mapping in Human Plasma Proteome. Protein J 40, 741–755 (2021). https://doi.org/10.1007/s10930-021-09984-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-09984-7

Keywords

Navigation