Skip to main content
Log in

High Yield Preparation of Functionally Active Catalytic-Translocation Domain Module of Botulinum Neurotoxin Type A That Exhibits Uniquely Different Enzyme Kinetics

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Botulinum neurotoxins (BoNTs) are the most toxic proteins known to cause flaccid muscle paralysis as a result of inhibition of neurotransmitter release from peripheral cholinergic synapses. BoNT type A (BoNT/A) is a 150 kDa protein consisting of two major subunits: light chain (LC) and heavy chain (HC). The LC is required for the catalytic activity of neurotoxin, whereas the C and N terminal domains of the HC are required for cell binding, and translocation of LC across the endosome membranes, respectively. To better understand the structural and functional aspects of BoNT/A intoxication we report here the development of high yield Escherichia coli expression system (2–20-fold higher yield than the value reported in the literature) for the production of recombinant light chain-translocation domain (rLC-TD/A) module of BoNT/A which is catalytically active and translocation competent. The open reading frame of rLC-TD/A was PCR amplified from deactivated recombinant BoNT/A gene (a non-select agent reagent), and was cloned using pET45b (+) vector to express in E. coli cells. The purification procedure included a sequential order of affinity chromatography, trypsinization, and anion exchange column chromatography. We were able to purify > 95% pure, catalytically active and structurally well-folded protein. Comparison of enzyme kinetics of purified LC-TD/A to full-length toxin and recombinant light chain A suggest that the affinity for the substrate is in between endopeptidase domain and botulinum toxin. The potential application of the purified protein has been discussed in toxicity and translocation assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BoNT:

Botulinum neurotoxin

BoNT/A:

Botulinum neurotoxin Type A

DTT:

Dithiothreitol

DNA:

Deoxyribonucleic acid

DrBoNT/A:

Deactivated botulinum neurotoxin type A

E.coli :

Escherichia coli

EDTA:

Ethylenediaminetetraacetic acid

FRET:

Fluorescence resonance energy transfer

GST:

Glutathione-S-transferase

HC:

Heavy chain

IPTG:

Isopropyl-b-d-thiogalactopyranoside

LB:

Luria–Bertani

LC:

Light chain

PCR:

Polymerase chain reaction

RBD:

Receptor binding domain

rLC-TD/A:

Recombinant light chain-translocation domain

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SNAP-25:

Synaptosome associated protein of 25 kDa

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein

TD:

Translocation domain

References

  1. Singh BR (2000) Intimate details of the most poisonous poison. Nat Struct Mol Biol 7:617–619

    Article  CAS  Google Scholar 

  2. Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    CAS  Google Scholar 

  3. Lacy DB, Tepp W, Cohen AC et al (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898–902. doi:10.1038/2338

    Article  CAS  Google Scholar 

  4. Montal M (2010) Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 79:591–617. doi:10.1146/annurev.biochem.051908.125345

    Article  CAS  Google Scholar 

  5. Fischer A, Sambashivan S, Brunger AT, Montal M (2012) Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel. J Biol Chem 287:1657–1661. doi:10.1074/jbc.C111.319400

    Article  CAS  Google Scholar 

  6. Blaustein RO, Germann WJ, Finkelstein A, DasGupta BR (1987) The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEBS Lett 226:115–120

    Article  CAS  Google Scholar 

  7. Shone CC, Hambleton P, Melling J (1987) A 50-kDa fragment from the NH2-terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles. Eur J Biochem 167:175–180

    Article  CAS  Google Scholar 

  8. Binz T, Rummel A (2009) Cell entry strategy of clostridial neurotoxins. J Neurochem 109:1584–1595. doi:10.1111/j.1471-4159.2009.06093.x

    Article  CAS  Google Scholar 

  9. Montecucco C, Molgo J (2005) Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol 5:274–279. doi:10.1016/j.coph.2004.12.006

    Article  CAS  Google Scholar 

  10. Koriazova LK, Montal M (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol 10:13–18. doi:10.1038/nsb879

    Article  CAS  Google Scholar 

  11. Fischer A, Montal M (2007) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem 282:29604–29611. doi:10.1074/jbc.M703619200

    Article  CAS  Google Scholar 

  12. Fischer A, Montal M (2007) Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci USA 104:10447–10452. doi:10.1073/pnas.0700046104

    Article  CAS  Google Scholar 

  13. Fischer A, Mushrush DJ, Lacy DB, Montal M (2008) Botulinum neurotoxin devoid of receptor binding domain translocates active protease. PLoS Pathog 4:e1000245. doi:10.1371/journal.ppat.1000245

    Article  Google Scholar 

  14. Sathyamoorthy V, Dasgupta BR, Foley J, Niece RL (1988) Botulinum neurotoxin type A: cleavage of the heavy chain into two halves and their partial sequences. Arch Biochem Biophys 266:142–151

    Article  CAS  Google Scholar 

  15. Chaddock JA, Herbert MH, Ling RJ et al (2002) Expression and purification of catalytically active, non-toxic endopeptidase derivatives of Clostridium botulinum toxin type A. Protein Expr Purif 25:219–228

    Article  CAS  Google Scholar 

  16. Jensen MJ, Smith TJ, Ahmed SA, Smith LA (2003) Expression, purification, and efficacy of the type A botulinum neurotoxin catalytic domain fused to two translocation domain variants. Toxicon 41:691–701. doi:10.1016/S0041-0101(03)00042-4

    Article  CAS  Google Scholar 

  17. Yang W, Lindo P, Riding S, Chang T, Cai S, Van T, Kukreja R, Zhou Y, Vasa K, Singh BR (2008) Expression, purification and comparative characterisation of enzymatically deactivated recombinant botulinum neurotoxin type A. Botulinum J 1:219. doi:10.1504/TBJ.2008.026477

    Article  Google Scholar 

  18. Baskaran P, Lehmann TE, Topchiy E et al (2013) Effects of enzymatically inactive recombinant botulinum neurotoxin type A at the mouse neuromuscular junctions. Toxicon 72:71–80. doi:10.1016/j.toxicon.2013.06.014

    Article  CAS  Google Scholar 

  19. Meyers JA, Sanchez D, Elwell LP, Falkow S (1976) Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J Bacteriol 127:1529–1537

    CAS  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  21. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  Google Scholar 

  22. Feltrup TM, Singh BR (2012) Development of a fluorescence internal quenching correction factor to correct botulinum neurotoxin type A endopeptidase kinetics using SNAPtide. Anal Chem 84:10549–10553. doi:10.1021/ac302997n

    Article  CAS  Google Scholar 

  23. Rasetti-Escargueil C, Machado CB, Preneta-Blanc R et al (2011) Enhanced sensitivity to Botulinum type A neurotoxin of human neuroblastoma SH-SY5Y cells after differentiation into mature neuronal cells. Botulinum J 2:30–48. doi:10.1504/TBJ.2011.041814

    Article  Google Scholar 

  24. Chellappan G, Kumar R, Santos E et al (2015) Structural and functional analysis of botulinum neurotoxin subunits for pH-dependent membrane channel formation and translocation. Biochim Biophys Acta 1854:1510–1516. doi:10.1016/j.bbapap.2015.05.013

    Article  CAS  Google Scholar 

  25. Mayer LD, Bally MB, Hope MJ, Cullis PR (1986) Techniques for encapsulating bioactive agents into liposomes. Chem Phys Lipids 40:333–345

    Article  CAS  Google Scholar 

  26. Cai S, Singh BR (2001) Role of the disulfide cleavage induced molten globule state of type a botulinum neurotoxin in its endopeptidase activity. BioChemistry 40:15327–15333

    Article  CAS  Google Scholar 

  27. Louis-Jeune C, Andrade M, Perez-Iratxeta C (2012) Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 80(2):374–381. doi:10.1002/prot.23188

    Article  CAS  Google Scholar 

  28. Kumar R, Kukreja RV, Cai S, Singh BR (2014) Differential role of molten globule and protein folding in distinguishing unique features of botulinum neurotoxin. Biochim Biophys Acta 1844:1145–1152. doi:10.1016/j.bbapap.2014.02.012

    Article  CAS  Google Scholar 

  29. Li L, Singh BR (1999) High-level expression, purification, and characterization of recombinant type A botulinum neurotoxin light chain. Protein Expr Purif 17:339–344. doi: 10.1006/prep.1999.1138

    Article  CAS  Google Scholar 

  30. Lacy DB, Stevens RC (1997) Recombinant expression and purification of the botulinum neurotoxin type A translocation domain. Protein Expr Purif 11:195–200. doi: 10.1006/prep.1997.0772

    Article  CAS  Google Scholar 

  31. Bolanos-Garcia VM, Davies OR (2006) Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim Biophys Acta 1760:1304–1313. doi:10.1016/j.bbagen.2006.03.027

    Article  CAS  Google Scholar 

  32. Brunger AT, Breidenbach MA, Jin R et al (2007) Botulinum neurotoxin heavy chain belt as an intramolecular chaperone for the light chain. PLoS Pathog 3:1191–1194. doi:10.1371/journal.ppat.0030113

    Article  CAS  Google Scholar 

  33. Todd C, Shine N et al (2005) Comparison of activity of botulinum neurotoxin type a holotoxin and light chain using SNAPtide® FRET substrates. In: 5th International conference on basic and therapeutic aspects of botulinum and tetanus toxins, List Labs Poster, Denver, CO. https://www.listlabs.com/mediafiles/posters/BTA-LcA-comparison-poster-4.pdf

  34. Todd C, Shine N, Crawford K (2008) New high affinity antibodies against botulinum neurotoxin type A. In: 6th Annual ASM biodefense and emerging diseases research meeting, List Labs Poster, Baltimore, MD. https://www.listlabs.com/mediafiles/posters/Biodefense-poster--022108-8.pdf

  35. Fischer A (2013) Synchronized chaperone function of botulinum neurotoxin domains mediates light chain translocation into neurons. Curr Top Microbiol Immunol 364:115–137. doi:10.1007/978-3-642-33570-9_6

    CAS  Google Scholar 

  36. Smith LSH (1988) Botulism: the organism, its toxins, the disease, 2nd edn. Charles C Thomas Publisher, Limited, Springfield

    Google Scholar 

  37. Clayton MA, Clayton JM, Brown DR, Middlebrook JL (1995) Protective vaccination with a recombinant fragment of Clostridium botulinum neurotoxin serotype A expressed from a synthetic gene in Escherichia coli. Infect Immun 63:2738–2742

    CAS  Google Scholar 

  38. Byrne MP, Smith LA (2000) Development of vaccines for prevention of botulism. Biochimie 82:955–966

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Institute of Allergy and Infectious Diseases (NIAID—1U01A1078070-02) and by Maryada Foundation. The authors would like to thank Mr. Stephen J. Riding for his assistance in purification procedures. The authors also thank Dr. Gowri Chellappan for her assistance in liposome preparation procedures.

Author information

Authors and Affiliations

Authors

Contributions

Conceived the idea: NT, HD, BS. Designed and carried out the experiments: HD, NT, RK. Kinetics experiments: KP, GA. Analyzed the data: HD, RK, BS. Contributed reagents/materials/analysis tools: SC, BS. Offered comments on data interpretation and manuscript preparation: SC, RK, BS. Wrote the manuscript: HD, BS.

Corresponding author

Correspondence to Bal Ram Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaliwal, H.K., Thiruvanakarasu, N., Kumar, R. et al. High Yield Preparation of Functionally Active Catalytic-Translocation Domain Module of Botulinum Neurotoxin Type A That Exhibits Uniquely Different Enzyme Kinetics. Protein J 36, 489–501 (2017). https://doi.org/10.1007/s10930-017-9744-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-017-9744-8

Keywords

Navigation