Skip to main content
Log in

Preparation of Curcumin Loaded Egg Albumin Nanoparticles Using Acetone and Optimization of Desolvation Process

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

In this study, acetone was used as a desolvating agent to prepare the curcumin-loaded egg albumin nanoparticles. Response surface methodology was employed to analyze the influence of process parameters namely concentration (5–15 %w/v) and pH (5–7) of egg albumin solution on solubility, curcumin loading and entrapment efficiency, nanoparticles yield and particle size. Optimum processing conditions obtained from response surface analysis were found to be the egg albumin solution concentration of 8.85 %w/v and pH of 5. At this optimum condition, the solubility of 33.57 %, curcumin loading of 4.125 %, curcumin entrapment efficiency of 55.23 %, yield of 72.85 % and particles size of 232.6 nm were obtained and these values were related to the values which are predicted using polynomial model equations. Thus, the model equations generated for each response was validated and it can be used to predict the response values at any concentration and pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BSA:

Bovine serum albumin

CV:

Coefficient of variation

EAC:

Egg albumin concentration

HSA:

Human serum albumin

RSM:

Response surface methodology

References

  1. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41:1955–1968

    Article  CAS  Google Scholar 

  2. Arnedo A, Espuelas S, Irache JM (2002) Albumin nanoparticles as carriers for a phosphodiester oligonucleotide. Int J Pharm 244(1–2):59–72

    Article  CAS  Google Scholar 

  3. Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157:168–182

    Article  CAS  Google Scholar 

  4. Irache JM, Espuelas S (2006) In: Kumar CSSR (ed) Biological and pharmaceuticals nanomaterials. Nanotechnologies for the life sciences. Wiley, New York

    Google Scholar 

  5. Jun JY, Nguyen HH, Paik SYR, Chun HS, Kang BC, Ko S (2011) Preparation of size-controlled bovine serum albumin (BSA) nanoparticles by a modified desolvation method. Food Chem 127(4):1892–1898

    Article  CAS  Google Scholar 

  6. Wang G, Siggers K, Zhang S, Jiang H, Xu Z, Zernicke RF, Matyas J, Uludağ H (2008) Preparation of BMP-2 containing bovine serum albumin (BSA) nanoparticles stabilized by polymer coating. Pharm Res 25(12):2896–2909

    Article  CAS  Google Scholar 

  7. Sokoloski TD, Royer GP (1984) In: Davis SS, Illum L, McVie JG, Tomlinson E (eds) Microspheres and drug therapy. Pharmaceutical, immunological and medical aspects. Elsevier, Amsterdam

    Google Scholar 

  8. Burger JJ, Tomlinson E, Mulder EMA, McVie JG (1985) Albumin microspheres for intra-arterial tumor targeting. I. Pharmaceutical aspects. Int J Pharm 23:333–344

    Article  CAS  Google Scholar 

  9. Ovadia H, Carbone AM, Paterson PY (1982) Albumin magnetic microspheres: a novel carrier for myelin basic protein. Immunol Methods 53(1):109–122

    Article  CAS  Google Scholar 

  10. Cummings J, Allan L, Smyth JF (1994) Encapsulation of mitomycin C in albumin microspheres alters pharmacokinetics, drug quinone reduction in tumor tissue and antitumor activity. Biochem Pharmacol 47:1345–1356

    Article  CAS  Google Scholar 

  11. Burgess DJ, Davis SS (1988) Potential use of albumin microspheres as a drug delivery system. II. In vivo deposition and release of steroids. Int J Pharm 46:69–76

    Article  CAS  Google Scholar 

  12. Tomlinson E, Burger JJ (1985) In: Wilder KJ, Green R (eds) Methods in Enzymology. Academic Press, Orlando

    Google Scholar 

  13. Kim TH, Jiang HH, Youn YS, Park CW, Tak KK, Lee S, Kim H, Jon S, Chen X, Lee KC (2011) Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int J Pharm 403:285–291

    Article  CAS  Google Scholar 

  14. Weber C, Coester C, Kreuter J, Langer K (2000) Desolvation process and surface characterization of protein nanoparticles. Int J Pharm 194(1):91–102

    Article  CAS  Google Scholar 

  15. Langer K, Balthasar S, Vogel V, Dinauer N, von Briesen H, Schubert D (2003) Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm 257(1–2):169–180

    Article  CAS  Google Scholar 

  16. Li F-Q, Su H, Wang J, Liu J-Y, Zhu Q-G, Fei Y-B, Pan Y-H, Hu J-H (2008) Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. Int J Pharm 349(1–2):274–282

    Article  CAS  Google Scholar 

  17. Ko S, Gunasekaran S (2006) Preparation of sub-100-nm β-lacto globulin (BLG) nanoparticles. J Microencapsul 23(8):887–898

    Article  CAS  Google Scholar 

  18. Lin W, Coombes AG, Davies MC, Davis SS, Illum L (1993) Preparation of sub-100 nm human serum albumin nanospheres using a pH-coacervation method. J Drug Target 1(3):237–243

    Article  CAS  Google Scholar 

  19. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK (2007) Curcumin phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 330(1–2):155–163

    Article  CAS  Google Scholar 

  20. Cortés-Rojasa DF, Oliveira WP (2012) Physicochemical properties of phytopharmaceutical preparations as affected by drying methods and carriers. Drying Technol 30(9):921–934

    Article  Google Scholar 

  21. Aziz HA, Tan YTF, Peh KK (2012) Solubility of drugs in aqueous polymeric solution: effect of ovalbumin on microencapsulation process. AAPS PharmSciTech 13(1):35–45

    Article  Google Scholar 

  22. Park EK, Lee SB, Lee YM (2005) Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 26(9):1053–1061

    Article  CAS  Google Scholar 

  23. Weng W, Liu W, Lin W (2001) Studies on the optimum models of the dairy product Kou Woan Lao using response surface methodology. Asian Australas J Anim Sci 14(10):1470–1476

    Article  Google Scholar 

  24. Haber A, Runyon R (1977) General statistics, 3rd edn. Addison-Wesley, Reading

    Google Scholar 

  25. Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132(3):171–181

    Article  CAS  Google Scholar 

  26. Wilting J, Hart BJ, De Gier JJ (1980) The role of albumin conformation in the binding of diazepam to human serum albumin. Biochim Biophys Acta 626:291–298

    Article  CAS  Google Scholar 

  27. Galindo-Rodriguez S, Allémann E, Fessi H, Doelker E (2004) Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res 21:1428–1439

    Article  CAS  Google Scholar 

  28. Deveswaran R, Manavalan R, Madhavan V, Bharath S (2010) Formulation and evaluation of albumin microspheres containing aceclofenac. Evaluation 4(1):020

    Google Scholar 

  29. Schmidt RH (1981) In: El Pour A (ed) Protein functionality in foods. American Chemical Society, Washington

    Google Scholar 

  30. Jithan AV, Madhavi K, Madhavi M, Prabhakar K (2011) Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. Int J Pharm Investig 1(2):119–125

    Article  CAS  Google Scholar 

  31. Taheri ES, Jahanshahi M, Mosavian MTH (2012) Preparation, characterization and optimization of egg albumin nanoparticles as low molecular-weight drug delivery vehicle. Part Part Syst Charact 29:1–12

    Article  Google Scholar 

  32. Paik SYR, Nguyen HH, Ryu J, Che JH, Kang TS, Lee JK, Song CW, Ko S (2013) Robust size control of bovine serum albumin (BSA) nanoparticles by intermittent addition of a desolvating agent and the particle formation mechanism. Food Chem 141:695–701

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Department of Science and Technology, Govt. of India for their financial support of this study through INSPIRE Fellowship 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Aniesrani Delfiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aniesrani Delfiya, D.S., Thangavel, K. & Amirtham, D. Preparation of Curcumin Loaded Egg Albumin Nanoparticles Using Acetone and Optimization of Desolvation Process. Protein J 35, 124–135 (2016). https://doi.org/10.1007/s10930-016-9652-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-016-9652-3

Keywords

Navigation