Skip to main content
Log in

Cloning, Purification and Characterization of Acetyl Xylane Esterase from Anoxybacillus flavithermus DSM 2641T with Activity on Low Molecular-Weight Acetates

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Family 4 carbohydrate esterases (CE-4) have deacetylate different forms of acetylated poly/oligosaccharides in nature. This family is recognized with a specific polysaccharide deacetylase domain assigned as NodB homology domain in their secondary structure. Most family 4 carbohydrate esterases have been structurally and biochemically characterized. However, this is the first study about the enzymological function of pdaB-like CE4s from thermophilic bacterium Anoxybacillus flavithermus DSM 2641T. A. flavithermus WK1 genome harbors five putative CE4 family genes. One of them is 762 bp long and encodes a protein of 253 amino acids in length and it was used as reference sequence in this study. It was described as acetyl xylane esterase (AXE) in genome project and this AfAXE gene was amplified without signal sequence and cloned. The recombinant protein was expressed in E. coli BL21 (DE3), purified by nickel affinity chromatography and its purity was visualized on SDS-PAGE. The activity of the recombinant enzyme was shown by zymogram analysis with α-naphtyl acetate as a substrate. The enzyme was characterized spectrophotometrically using chromogenic p-nitrophenyl acetate. Optimum temperature and pH were determined as 50 °C and 7.5, respectively. Km and Vmax were determined as 0.43 mM and 3333.33 U/mg, respectively under optimum conditions. To our knowledge this is the first enzymological characterization of a pdaB-like family 4 carbohydrate esterase from the members of Anoxybacillus genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AXE:

Acetyl xylan esterase

p-NPAc:

para-Nitrophenyl acetate

p-NP:

para-Nitrophenol

α-NAc:

α-Naphtyl acetate

pdaA :

peptidoglycan N-acetylmuramic acid deacetylase A

pdaB :

A polysaccharide deacetylase Gene B

Af :

Anoxybacillus flavithermus

CE4:

Carbohydrate esterases 4

NodB :

Nodulation protein B

MurNAc:

N-acetylmuramic acid

GlcNAc:

N-acetylglucosamine

References

  1. Biely P (2012) Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 30:1575–1588

    Article  CAS  Google Scholar 

  2. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238

    Article  Google Scholar 

  3. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:1–14

    Article  Google Scholar 

  4. Oberbarnscheidt L, Taylor EJ, Davies GJ, Gloster TM (2007) Structure of a carbohydrate esterase from Bacillus anthracis. Proteins 66:250–252

    Article  CAS  Google Scholar 

  5. Caufrier F, Martinou A, Dupont C, Bouriotis V (2003) Carbohydrate esterase family 4 enzymes: substrate specificity. Carbohydr Res 338:687–692

    Article  CAS  Google Scholar 

  6. Kafetzopoulos D, Thireos G, Vournakis JN, Bouriotis V (1993) The primary structure of a fungal chitin deacetylase reveals the function for two bacterial gene products. Proc Natl Acad Sci USA 90:8005–8008

    Article  CAS  Google Scholar 

  7. Blair DE, Schüttelkopf AW, MacRae JI, van Aalten DM (2005) Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proc Natl Acad Sci USA 102:15429–15434

    Article  CAS  Google Scholar 

  8. Fukushima T, Tanabe T, Yamamoto H, Hosoya S, Sato T, Yoshikawa H, Sekiguchi J (2004) Characterization of a polysaccharide deacetylase gene homologue (pdaB) on sporulation of Bacillus subtilis. J Biochem 136:283–291

    Article  CAS  Google Scholar 

  9. Tuncer M (2000) Characterization of β-xylosidase and α-l-arabinofuranosidase activities from Thermomonospora fusca BD25. Turk J Biol 24:753–767

    CAS  Google Scholar 

  10. Christov LP, Prior BA (1993) Esterases of xylan-degrading microorganisms: production, properties, and significance. Enzyme Microb Technol 15:460–475

    Article  CAS  Google Scholar 

  11. Sandalli C, Saral A, Ülker S, Karaoğlu H, Beldüz AO, Çiçek AÇ (2014) Cloning, expression, and characterization of a novel CTP synthase gene from Anoxybacillus gonensis G2. Turk J Biol 38:111–117

    Article  CAS  Google Scholar 

  12. Bornscheuer UT, Reif OW, Lausch R, Freitag R, Scheper T, Kolisis FN, Menge U (1994) Lipase of Pseudomonas cepacia for biotechnological purposes: purification, crystallization and characterization. Biochim Biophys Acta 1201:55–60

    Article  CAS  Google Scholar 

  13. Shao W, Wiegel J (1995) Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol 61:729–733

    CAS  Google Scholar 

  14. Sunna A, Antranikian G (1996) Growth and production of xylanolytic enzymes by the extreme thermophilic anaerobic bacterium Thermotoga thermarum. Appl Microbiol Biotechnol 45:671–676

    Article  CAS  Google Scholar 

  15. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  16. Saw JH, Mountain BW, Feng L, Omelchenko MV, Hou S, Saito JA, Stott MB, Li D, Zhao G, Wu J, Galperin MY, Koonin EV, Makarova KS, Wolf YI, Rigden DJ, Dunfield PF, Wang L, Alam M (2008) Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1. Genome Biol 9:161–177

    Article  Google Scholar 

  17. Bendtsen JD, Nielsen H, Heijne GV, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  18. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7:539–545

    Article  Google Scholar 

  19. Altaner C, Saake B, Tenkanen M, Eyzaguirre J, Faulds CB, Biely P, Viikari L, Siika-aho M, Puls J (2003) Regioselective deacetylation of cellulose acetates by acetyl xylan esterases of different CE-families. J Biotechnol 105:95–104

    Article  CAS  Google Scholar 

  20. Dupont C, Daigneault N, Shareck F, Morosoli R, Kluepfel D (1996) Purification and characterization of an acetyl xylan esterase produced by Streptomyces lividans. Biochem J 319:881–886

    Article  CAS  Google Scholar 

  21. Kosugi A, Murashima K (2002) Doi RH Xylanase and acetyl xylan esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation. Appl Environ Microbiol 68:6399–6402

    Article  CAS  Google Scholar 

  22. Puchart V, Gariépy MC, Shareck F, Dupont C (2006) Identification of catalytically important amino acid residues of Streptomyces lividans acetylxylan esterase a from carbohydrate esterase family 4. Biochim Biophys Acta 1764:263–274

    Article  CAS  Google Scholar 

  23. Zhao Y, Park RD, Muzzarelli RA (2010) Chitin deacetylases: properties and applications. Mar Drugs 8:24–46

    Article  CAS  Google Scholar 

  24. Millward-Sadler SJ, Davidson K, Hazlewood GP, Black GW, Gilbert HJ, Clarke JH (1995) Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus. Biochem J 312:39–48

    Article  CAS  Google Scholar 

  25. Laurie JI, Clarke JH, Ciruela A, Faulds CB, Williamson G, Gilbert HJ, Rixon JE, Millward-Sadler J, Hazlewood GP (1997) The NodB domain of a multidomain xylanase from Cellulomonas fimi deacetylates acetyl xylan. FEMS Microbiol Lett 148:261–264

    Article  CAS  Google Scholar 

  26. Ding S, Cao J, Zhou R, Zheng F (2007) Molecular cloning, and characterization of a modular acetyl xylan esterase from the edible straw mushroom Volvariella volvacea. FEMS Microbiol Lett 274:304–310

    Article  CAS  Google Scholar 

  27. Pareek N, Vivekanand V, Saroj S, Sharma AK, Singh RP (2012) Purification and characterization of chitin deacetylase from Penicillium oxalicum SAEM-51. Carbohydr Polym 87:1091–1097

    Article  CAS  Google Scholar 

  28. Kafetzopoulos D, Martinou A, Bouriotis V (1993) Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc Natl Acad Sci USA 90:2564–2568

    Article  CAS  Google Scholar 

  29. Hekmat O, Tokuyasu K, Withers SG (2003) Subsite structure of the endo-type chitin deacetylase from a Deuteromycete, Colletotrichum lindemuthianum: an investigation using steady-state kinetic analysis and MS. Biochem J 374:369–380

    Article  CAS  Google Scholar 

  30. Taylor EJ, Gloster TM, Turkenburg JP, Vincent F, Brzozowski AM, Dupont C, Shareck F, Centeno MS, Prates JA, Puchart V, Ferreira LM, Fontes CM, Biely P, Davies GJ (2006) Structure and activity of two metal ion-dependent acetylxylan esterases involved in plant cell wall degradation reveals a close similarity to peptidoglycan deacetylases. J Biol Chem 281:10968–10975

    Article  CAS  Google Scholar 

  31. Blair DE, Hekmat O, Schüttelkopf AW, Shrestha B, Tokuyasu K, Withers SG, Aalten DM (2006) Structure and mechanism of chitin deacetylase from the fungal pathogen Colletotrichum lindemuthianum. Biochemistry 45:9416–9426

    Article  CAS  Google Scholar 

  32. Little DJ, Poloczek J, Whitney JC, Robinson H, Nitz M, Howell PL (2012) The structure and metal dependent activity of Escherichia coli PgaB provides insight into the partial de-N-acetylation of poly-beta-1,6-N-acetyl-d-glucosamine. J Biol Chem 287:31126–31137

    Article  CAS  Google Scholar 

  33. Tsigos I, Bouriotis V (1995) Purification and characterization of chitin deacetylase from Colletotrichum lindemuthianum. J Biol Chem 270:26286–26291

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Recep Tayyip Erdogan University Research Fund Grants BAP- 2011.102.03.3 and BAP- 2012.102.03.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemal Sandallı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eminoğlu, A., Ülker, S. & Sandallı, C. Cloning, Purification and Characterization of Acetyl Xylane Esterase from Anoxybacillus flavithermus DSM 2641T with Activity on Low Molecular-Weight Acetates. Protein J 34, 237–242 (2015). https://doi.org/10.1007/s10930-015-9618-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-015-9618-x

Keywords

Navigation