Skip to main content
Log in

Limited Proteolysis of Fibrinogen by Fibrinogenase from Echis multisquamatis Venom

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Previously we purified fibrinogenase from venom of Echis multisquamatis and showed that the enzyme predominantly cleaves BβArg42-Ala43 peptide bond of fibrinogen. A much slower hydrolysis of its Aα-chain was also shown. To evaluate the accessibility of the hydrolysis sites to fibrinogenase’s hydrolytic action, the pathway of cleavage of Aα- and Bβ-chains of fibrinogen, monomeric and polymeric fibrin desA and desAB has been investigated using western blot with monoclonal antibodies to Bβ 26–42 and Aα 20–78 of fibrinogen. The data indicated that the BβArg42-Ala43 peptide bond is available for cleavage in all forms of fibrin(ogen) with the exception of polymerized fibrin desAB. This is direct evidence of BβN-domain involvement in formation of protofibrils that makes it inaccessible to protease. The Aα-chain of fibrinogen remained intact after 3 min of incubation with fibrinogenase. Further incubation resulted in cleaving of the fibrin(ogen) αC-regions with the formation of two kinds of degradation products (~30 and ~60 kDa). In the case of monomeric fibrin desA or desAB we observed simultaneous hydrolysis of Aα and Bβ-chains and the cleavage of Aα-chain was more apparent for both forms of polymeric fibrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

tPA:

Tissue plasminogen activator

SDS:

Sodium dodecyl sulphate

PAGE:

Polyacrylamide gel electrophoresis

TBS:

Tris-buffered saline

PBS:

Phosphate-buffered saline

HRP:

Horseradish peroxidase

TEMED:

Tetramethylethylenediamine

References

  1. Chernyshenko VO, Gornytska OV, Platonova TM, Sokolovska LI (2010) A new fibrinogenase from Echis multisquamatis venom is a perspective agent for limited proteolysis and defibrinogenation. Adv Biosci Biotechnol 1:91–96

    Article  CAS  Google Scholar 

  2. Gorkun OV, Litvinov RI, Veklich YI, Weisel JW (2006) Interactions mediated by the N-terminus of fibrinogen’s Bβ chain. Biochemistry 45:14843–14852

    Article  CAS  Google Scholar 

  3. Chernyshenko VO, Chernyshenko TM, Korolova DS, Volynets GP, Kolesnikova IN, Mikhalovska LI, Platonova TM (2014) Fibrin β26–42 binds prothrombin and leads to it’s non-enzymatic activation. XXIIInd international fibrinogen workshop 45

  4. Chernyshenko VO, Mikhalovska LI, Platonova TM (2012) Fibrinogen BbN-domain in platelets aggregation. XXIInd international fibrinogen workshop 80

  5. Yakovlev S, Makogonenko E, Kurochkina N, Nieuwenhuizen W, Ingham K, Medved L (2000) Conversion of fibrinogen to fibrin: mechanism of exposure of tPA- and plasminogen-binding sites. Biochemistry 39:15730–15741

    Article  CAS  Google Scholar 

  6. Foley JH, Cook PF, Nesheim ME (2011) Kinetics of activated thrombin-activatable fibrinolysis inhibitor (TAFIa)-catalyzed cleavage of C-terminal lysine residues of fibrin degradation products and removal of plasminogen-binding sites. J Biol Chem 286:19280–19286

    Article  CAS  Google Scholar 

  7. Chernyshenko VO, Mjasnikova MP, Platonova TM, Lougovskoi EV, Makogonenko EM (2000) Purification and biochemical characterisation of fibrinogenase from Echis multisquamatis venom. Biotechnol Acta 3:27–33

    Google Scholar 

  8. Varetskaia TV (1965) Preparation of a fibrin monomer and studies on some of its properties. Ukr Biokhim Zh 37:194–206

    CAS  Google Scholar 

  9. Chernyshenko VO, Platonova TM, Makogonenko YM, Rebriev AV, Mikhalovska LI, Chernyshenko TM, Komisarenko SV (2014) Fibrin(ogen)olytic and platelet modulating activity of a novel protease from the Echis multisquamatis snake venom. Biochimie 105:76–83

    Article  CAS  Google Scholar 

  10. Laemli RV (1970) Cleavage of structural poteins during of bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  11. Gershkovich AA, Kibirev VK (1988) Chromogenic and fluorogenic peptide substrates of proteolytic enzymes. Bioorg Khim 14:1461–1488

    CAS  Google Scholar 

  12. Dixon M, Webb EC (1964) Enzymes. Academic Press Inc., New York

    Google Scholar 

  13. Chang J-Y (1985) Thrombin specificity. Eur J Biochem 151:217–224

    Article  CAS  Google Scholar 

  14. Kiss I, Aurell L, Pozsgay M, Elödi P (1985) Investigation on the substrate specificity of human plasmin using tripeptidyl-p-nitroanilide substrates. Biochem Biophys Res Commun 131:928–934

    Article  CAS  Google Scholar 

  15. McRae BJ, Kurachi K, Heimark RL, Fujikawa K, Davie EW, Powers JC (1981) Mapping the active sites of bovine thrombin, factor IXa, factor Xa, factor XIa, factor XIIa, plasma kallikrein, and trypsin with amino acid and peptide thioesters: development of new sensitive substrates. Biochemistry 20:7196–7206

    Article  CAS  Google Scholar 

  16. Magalhaes HPB, Magalhaes A, Juliano L, Nelson DL, Rogana E (2006) Mechanism of action and determination of the best substrate for a thrombin-like enzyme from Lachesis muta muta venom by regression analysis of the kinetic parameters determined with peptidyl p-nitroanilide substrates. Toxicon 47:453–458

    Article  CAS  Google Scholar 

  17. Jin Y, Lu Q-M, Wang W-Y, Xiong YL (2002) Action of two serine proteases from Trimeresurus jerdonii venom on chromogenic substrates and fibrinogen. Comp Biochem Physiol 132:529–534

    Article  Google Scholar 

  18. Zhu Z, Liang Z, Zhang T, Zhu Z, Xu W, Teng M, Niu L (2005) Crystal structures and amidolytic activities of two glycosylated snake venom serine proteinases. J Boil Chem 280:10524–10529

    Article  CAS  Google Scholar 

  19. Mikhaliy E (1983) Kinetic and molecular mechanism of proteolytic fragmentation of fibrinogen. Ann N Y Acad Sci 408:60–70

    Article  Google Scholar 

  20. Fontana A, Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M (1986) Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 25:1847–1851

    Article  CAS  Google Scholar 

  21. Fontana A, Polverino de Laureto P, Spolaore B, Frare E, Picotti P, Zambonin M (2004) Probing protein structure by limited proteolysis. Acta Biochim Pol 51:299–321

    CAS  Google Scholar 

  22. Zappacosta F, Pessi A, Bianchi E, Venturini S, Sollazzo M, Tramontano A, Marino G, Pucci P (1996) Probing the tertiary structure of proteins by limited proteolysis and mass spectrometry: the case of Minibody. Protein Sci 5:802–813

    Article  CAS  Google Scholar 

  23. Pechik I, Yakovlev S, Mosesson MW, Gilliland GL, Medved L (2006) Structural basis for sequential cleavage of fibrinopeptides upon fibrin assembly. Biochemistry 45:3588–3597

    Article  CAS  Google Scholar 

  24. Litvinov RI, Gorkun OV, Owen SF, Shuman H, Weisel JW (2005) Polymerization of fibrin: specificity, strength, and stability of knob-hole interactions studied at the single-molecule level. Blood 106:2944–2951

    Article  CAS  Google Scholar 

  25. Veklich YI, Gorkun OV, Medved LV, Nieuwenhuizen W, Weisel JW (1993) Carboxy terminal portions of the α-chains of fibrinogen and fibrin: localization by electron microscopy and the effects of isolated αC fragments on polymerization. J Biol Chem 268:13577–13585

    CAS  Google Scholar 

  26. Collet JP, Moen JL, Veklich YI, Gorkun OV, Lord ST, Montalescot G, Weisel JW (2005) The alpha C domains of fibrinogen affect the structure of the fibrin clot, its physical properties, and its susceptibility to fibrinolysis. Blood 106:3824–3830

    Article  CAS  Google Scholar 

  27. Lugovskoy EV, Gritsenko PG, Kapustianenko LG, Kolesnikova IN, Chernishov VI, Komisarenko SV (2007) Functional role of Bβ-chain N-terminal fragment in the fibrin polymerization process. FEBS J 274:4540–4549

    Article  CAS  Google Scholar 

  28. Tsurupa G, Pechik I, Litvinov RI, Hantgan RR, Tjandra N, Weisel JW, Medved L (2012) On the mechanism of αC polymer formation in fibrin. Biochemistry 51:2526–2538

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author gratefully acknowledges Dr Lyuba Mikhalovska for her help with N-terminal analysis of polypeptides and Prof. Eduard Lugovskoy for helpful advice on the choice of specific antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Chernyshenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshenko, V.O. Limited Proteolysis of Fibrinogen by Fibrinogenase from Echis multisquamatis Venom. Protein J 34, 130–134 (2015). https://doi.org/10.1007/s10930-015-9605-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-015-9605-2

Keywords

Navigation