Skip to main content
Log in

Structure Determination of Functional Membrane Proteins using Small-Angle Neutron Scattering (SANS) with Small, Mixed-Lipid Liposomes: Native Beef Heart Mitochondrial Cytochrome c Oxidase Forms Dimers

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The low-resolution three-dimensional structure of purified native beef heart mitochondrial cytochrome c oxidase (COX) in asolectin unilamellar liposomes has been measured by small-angle neutron scattering under the conditions where the protein remains fully functional. From a neutron scattering perspective, the use of mixed-lipid liposomes provided for a more homogeneous matrix than can be achieved using a single lipid. As a result, the measurements were able to be performed under conditions where the liposome scattering was essentially eliminated (contrast-matched conditions). The protein structure in the membrane was modeled as a simple parallelepiped with side lengths of (59 × 70 × 120) Å with uncertainties, respectively, (11, 12, 20 Å). The molecular mass calculated for a typical protein with this volume is estimated to be (410 ± 124) kDa, which indicates the mass of a COX dimer. The longest dimension has some uncertainty due to intermolecular scattering contributing to the data. Nevertheless, that length was estimated using an average protein density and the known dimer molecular mass. Using the same cross sectional dimensions for the structure, the length is estimated to be 120 Å. However, the measured scattering curve of the dimer in the liposome differs significantly from that calculated from the X-ray structure of the dimer in a crystal of mixed micelles (PDB 3AG1). The calculated SANS scattering from the crystal structure was fit with a parallelepiped, measuring (59 × 101 × 129) Å with fitting uncertainties, respectively, (2, 3, 3 Å). Our results suggest that COX is a functional dimer when reconstituted into mixed-lipid liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

COX:

Cytochrome c oxidase

DMPC:

Dimyristoylphosphatidylcholine

DPPC:

Dipalmitoylphosphatidylcholine

EM:

Electron microscopy

H/D:

Hydrogen-deuterium ratio

HEPES:

N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid

NCNR:

NIST Center for Neutron Research

PDB:

Protein data bank

PAGE:

Polyacrylamide gel electrophoresis

Pt/C:

Platinum-carbon

SANS:

Small-angle neutron scattering

SDS:

Sodium dodecyl sulfate

References

  1. Althoff T, Mills DJ, Popot J-L, Kühlbrandt W (2011) EMBO J 1–13

  2. Antonini G, Brunori M, Malatesta E, Sarti P, Wilson MT (1987) J Biol Chem 262(21):10077–10079

    CAS  Google Scholar 

  3. Blasie JK, Erecińska M, Samuels S, Leigh JS (1978) Biochem Biophys Acta 501:33–52

    Article  CAS  Google Scholar 

  4. Carroll RC, Racker E (1977) J Biol Chem 252(10):6981–6990

    CAS  Google Scholar 

  5. Dudkina NV, Kudryashev M, Stahlberg H, Boekema EJ (2011) Proc Nat Acad Sci US 108:15196–15200

    Article  CAS  Google Scholar 

  6. Estey LA, Prochaska LJ (1993) Biochem 32:13270–13276

    Article  CAS  Google Scholar 

  7. Frey TG, Costello MJ, Chan SHP (1984) Ultramicros 13:85–92

    Article  CAS  Google Scholar 

  8. Glinka CJ, Barker JG, Hammouda B, Krueger S, Moyer JJ, Orts WJ (1998) J Appl Cryst 31(3):430–445

    Article  CAS  Google Scholar 

  9. Green D, Wharton D (1963) Biochem Z 338:335–342

    CAS  Google Scholar 

  10. Gregory L, Ferguson-Miller S (1989) Biochemistry 28:2655–2662

    Article  CAS  Google Scholar 

  11. Hansen FB, Nicholls P (1978) Biochim Biophys Acta 502:400–408

    Article  CAS  Google Scholar 

  12. Harpaz Y, Gerstein M, Chothia C (1994) Structure 2:641–649

    Article  CAS  Google Scholar 

  13. Heidorn DB, Trewhella J (1988) Biochem 27:909–915

    Article  CAS  Google Scholar 

  14. Helling S, Vogt S, Rhiel A, Ramzan R, Wen L, Marcus K, Kandnbach B (2008) Mol Cell Proteomics 7(9):1714–1724

    Article  CAS  Google Scholar 

  15. Hirai M, Iwase H, Hayakawa T, Koizumi M, Takahashi H (2003) Biophys J 85:1600–1610

    Article  CAS  Google Scholar 

  16. Hüttemann M, Lee I, Smavati L, Yu H, Doan JW (2007) Biochim Biophys Acta 1773:1701–1720

    Article  Google Scholar 

  17. IUPAC (2011) Schulz-Zimm distribution. IUPAC Gold Book

  18. Jacrot B (1976) Rep Prog Phys 39:911–953

    Article  CAS  Google Scholar 

  19. Kiselev MA, Zemlyanaya EV, Aswal VK (2004) Cryst Reports 49:S136–S141

    CAS  Google Scholar 

  20. Kline SR (2006) J Appl Cryst 39:895–900

    Article  CAS  Google Scholar 

  21. Krab K, Wikström M (1978) Biochim Biophys Acta 504:200–214

    Article  CAS  Google Scholar 

  22. Krueger S, Groshkova I, Brown J, Hoskins J, McKenney KH, Schwarz FP (1998) J Biol Chem 273(32):20001–20008

    Article  CAS  Google Scholar 

  23. Kučerka N, Pencer J, Sachs JN, Nagle JF, Katsaras J (2007) Langmuir 23:1292–1299

    Article  Google Scholar 

  24. Mochizuki M, Aoyama H, Shinzawa-Itoh K, Usui T, Tsukihara T, Yoshikawa S (1999) J Biol Chem 274(19):33403–33411

    Article  CAS  Google Scholar 

  25. Müller M, Azzi A (1985) J Bioenerg Biomemb 17(6):385

    Article  Google Scholar 

  26. Muramoto K, Ohta K, Shinzawa-Itoh K, Kanda K, Taniguchi M, Nabekura H, Yamashita E, Tsukihara T, Yoshikawa S (2010) Proc Nat Acad Sci USA 107(17):7740–7745

    Article  CAS  Google Scholar 

  27. Musatov A, Robinson NC (2002) Biochem 41:4371–4376

    Article  CAS  Google Scholar 

  28. Musatov A, Ortega-Lopez J, Robinson NC (2000) Biochem 39:12996–13004

    Article  CAS  Google Scholar 

  29. Nguyen X-T, Pabarue HA, Geyer RR, Shroyer LA, Estey LA, Parilo M, Wilson KS, Prochaska LJ (2002) Prot Exp Purif 26:122–130

    Article  CAS  Google Scholar 

  30. Nicholls P, Hildebrandt V, Wrigglesworth JM (1980) Arch Biochem Biophys 204:533–543

    Article  CAS  Google Scholar 

  31. Parsegian VA, Fuller N, Rand RP (1979) Proc Natl Acad Sci USA 76(6):2750–2754

    Article  CAS  Google Scholar 

  32. Parsons DF, Ninham BW (2009) J Phys Chem A 113:1141–1150

    Article  CAS  Google Scholar 

  33. Pencer J, Mills T, Anghel V, Krueger S, Epand RM, Katsaras J (2005) Eur Phys J E 18:447–458

    Article  CAS  Google Scholar 

  34. Ramzan R, Staniek K, Kadenbach B, Vogt S (2010) Biochim Biophys Acta 1797:1672–1680

    Article  CAS  Google Scholar 

  35. Rich PR, Maréchal A (2010) Essays Biochem 47:1–23

    Article  CAS  Google Scholar 

  36. Robinson NC, Talbert L (1986) Biochem 25:2328–2335

    Article  CAS  Google Scholar 

  37. Schmiedel H, Jörchel P, Kiselev M, Klose G (2001) J Phys Chem 105:111–117

    CAS  Google Scholar 

  38. Squire PG, Himmel ME (1979) Arch Biochem Biophys 196(1):165–177

    Article  CAS  Google Scholar 

  39. Suarez MD, Revzin A, Narlock R, Kempner ES, Thompson DA, Ferguson-Miller S (1984) J Biol Chem 259:13791–13799

    CAS  Google Scholar 

  40. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) Science 272:1136–1144

    Article  CAS  Google Scholar 

  41. Valpuesta JM, Henderson R (1990) J Mol Biol 214:237–251

    Article  CAS  Google Scholar 

  42. Van Gelder BF (1966) Biochim Biophys Acta 118:35–46

    Google Scholar 

  43. Wilson KS, Prochaska LJ (1990) Arch Biochem Biophys 282:413–420

    Article  CAS  Google Scholar 

  44. Wittig I, Schägger H (2009) Biochim Biophys Acta 1787:672–680

    Article  CAS  Google Scholar 

  45. Yonetani T (1967) Methods Enz 10:332–335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Small-angle neutron scattering experiments were performed on the NG3 and NG7 30 m SANS instruments at the NIST Center for Neutron Research. This equipment was partially supported by the National Science Foundation under agreement No. DMR-0454672. Funding at Wright State was provided by the Wright State University Boonshoft School of Medicine, the Emily Webb Foundation, and the American Heart Association, Ohio Affiliate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Rubinson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinson, K.A., Pokalsky, C., Krueger, S. et al. Structure Determination of Functional Membrane Proteins using Small-Angle Neutron Scattering (SANS) with Small, Mixed-Lipid Liposomes: Native Beef Heart Mitochondrial Cytochrome c Oxidase Forms Dimers. Protein J 32, 27–38 (2013). https://doi.org/10.1007/s10930-012-9455-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-012-9455-0

Keywords

Navigation