Skip to main content
Log in

Analysis of Binding Interaction of Curcumin and Diacetylcurcumin with Human and Bovine Serum Albumin Using Fluorescence and Circular Dichroism Spectroscopy

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The current study reports the binding of curcumin (CUR) as the main pharmacologically active ingredient of turmeric and diacetylcurcumin (DAC) as a bioactive derivative of curcumin to human serum albumin (HSA) and bovine serum albumin (BSA). The apparent binding constants and number of substantive binding sites have been evaluated by fluorescence quenching method. The distance (r) between donor (HSA and BSA) and acceptor (CUR and DAC) was obtained on the basis of the Förster’s theory of non-radiative energy transfer. The minor changes on the far-UV circular dichroism spectra resulted in partial changes in the calculated secondary structure contents of HSA and BSA. The negligible alteration in the secondary structure of both albumin proteins indicated that ligand-induced conformational changes are localized to the binding site and do not involve considerable changes in protein folding. The visible CD spectra indicated that the optical activity observed during the ligand binding due to induced-protein chirality. All of the achieved results suggested the important role of the phenolic OH group of CUR in the binding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CUR:

Curcumin

DAC:

Diacetylcurcumin

HSA:

Human serum albumin

BSA:

Bovine serum albumin

CD:

Circular dichroism

References

  1. Aggarwal BB, Kumar A, Aggarwal MS, Shishodia S (2005) Curcumin derived from turmeric (Curcuma longa): a spice for all seasons. In: Preuss H (ed) Phytopharmaceuticals in cancer chemoprevention. CRC Press, Boca Raton, pp 349–387

    Google Scholar 

  2. Araújo CAC, Leon LL (2001) Mem Inst Oswaldo Cruz 96:723–728

    Article  Google Scholar 

  3. Barik A, Mishra B, Kunwar A, Priyadarsini KI (2007) Chem Phys Lett 436:239–243

    Article  CAS  Google Scholar 

  4. Barik A, Priyadarsini KI, Mohan H (2003) Photochem Photobiol 77:597–603

    Article  CAS  Google Scholar 

  5. Carter D, Ho JX (1994) Advances in protein chemistry, vol 45. Academic Press, New York, pp 153–203

    Google Scholar 

  6. Epps DE, Raub TJ, Caiolfa V, Chiari A, Zamai M (1999) J Pharm Pharmacol 51:41–48

    Article  CAS  Google Scholar 

  7. Gelamo EL, Tabak M (2000) Spectrochim Acta A 56:2255–2271

    Article  Google Scholar 

  8. Ghuman J, Zunszian PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S (2005) J Mol Biol 353:38–52

    Article  CAS  Google Scholar 

  9. Goel A, Kunnumakkara AB, Aggarwal BB (2007) Biochem Pharmacol 17:787–809

    Google Scholar 

  10. Govindarajan VS (1980) Crit Rev Food Sci Nutr 12:199–301

    Article  CAS  Google Scholar 

  11. He XM, Carter DC (1992) Nature 358:209–215

    Article  CAS  Google Scholar 

  12. Jasim F, Ali F (1989) Michrochem J 39:156–159

    Article  CAS  Google Scholar 

  13. Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK (2005) Trends Food Sci Technol 16:533–548

    Article  CAS  Google Scholar 

  14. Jiang M, Xie MX, Zheng D, Liu Y, Li XY, Cheng X (2004) J Mol Struct 692:71–80

    Article  CAS  Google Scholar 

  15. Karnaukhova E (2007) Biochem Pharmacol 73:901–910

    Article  CAS  Google Scholar 

  16. Kragh-Hansen U (1981) Pharmacol Rev 33:17–53

    CAS  Google Scholar 

  17. Kunwar A, Barik A, Pandey R, Priyadarsini KI (2006) Biochim Biophys Acta 1760:1513–1520

    CAS  Google Scholar 

  18. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New York

    Google Scholar 

  19. Lakowicz JR, Weber G (1973) Biochemistry 12:4161–4170

    Article  CAS  Google Scholar 

  20. Lampe V, Milobedeska J (1913) Ber Dtsch Chem Ges 46:2235–2240

    Article  CAS  Google Scholar 

  21. Liu J, Tian J, Zhang J, Hu Z, Chen X (2003) Anal Bioanal Chem 376:864–867

    Article  CAS  Google Scholar 

  22. Manavalan P, Johnson WCJR (1987) Anal Biochem 167:76–85

    Article  CAS  Google Scholar 

  23. Milobedeska J, Kostanecki V, Lampe V (1910) Ber Dtsch Chem Ges 43:2163–2170

    Article  Google Scholar 

  24. Mishra S, Narain U, Mishra R, Misra K (2005) Bioorg Med Chem 13:1477–1486

    Article  CAS  Google Scholar 

  25. Mohammadi K, Thompson KH, Patrick BO, Storr T, Martins C, Polishchuk E, Yuen VG, McNeill JH, Orvig C (2005) J Inorg Biochem 99:2217–2225

    Article  CAS  Google Scholar 

  26. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) Protein Sci 4:2411–2423

    Article  CAS  Google Scholar 

  27. Papadopoulou A, Green RJ, Frazier RA (2005) J Agric Food Chem 53:158–163

    Article  CAS  Google Scholar 

  28. Peters T Jr (1985) Adv Protein Chem 37:161–245

    Article  CAS  Google Scholar 

  29. Pulla Reddy AC, Sudharshan E, Appu Rao AG, Lokesh BR (1999) Lipids 34:1025–1029

    Article  CAS  Google Scholar 

  30. Sahoo BK, Ghosh KS, Dasgupta S (2008) Biophys Chem 132:81–88

    Article  CAS  Google Scholar 

  31. Sharma RA, Gescher AJ, Steward WP (2005) Eur J Cancer 41:1955–1968

    Article  CAS  Google Scholar 

  32. Spector AA (1975) J Lipid Res 16:165–179

    CAS  Google Scholar 

  33. Sreejayan N, Rao MN (1997) J Pharm Pharmacol 49:105–107

    CAS  Google Scholar 

  34. Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Matsumoto K, Watanabe H (2004) Biol Pharm Bul 27:170–173

    Article  CAS  Google Scholar 

  35. Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Watanabe H, Matsumoto K (2006) Life Sci 78:1884–1891

    Article  CAS  Google Scholar 

  36. Vajragupta O, Boonchoong P, Berliner LJ (2004) Free Radic Res 38:303–314

    Article  CAS  Google Scholar 

  37. Vajragupta O, Boonchoong P, Watanabe H, Tohda M, Kummasud N, Sumanont Y (2003) Free Radic Biol Med 35:1632–1644

    Article  CAS  Google Scholar 

  38. Valeur B, Brochon JC (1999) New trends in fluorescence spectroscopy, 6th edn. Springer, Berlin, p 25

    Google Scholar 

  39. Wang F, Yang J, Wu X, Liu S (2005) Acta A Mol Biomol Spectrosc 61:2650–2656

    Article  CAS  Google Scholar 

  40. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK (1997) Pharm Biomed Anal 15:1867–1876

    Article  CAS  Google Scholar 

  41. Ware WR (1962) J Phys Chem 66:455–458

    Article  CAS  Google Scholar 

  42. Yang JT, Wu CSC, Martinez HM (1986) Methods Enzymol 130:208–269

    Article  CAS  Google Scholar 

  43. Zhou B, Qi ZD, Xiao Q, Dong JX, Zhang YZ, Liu Y (2007) J Biochem Biophys Methods 70:743–747

    Article  CAS  Google Scholar 

  44. Zsila F, Bikádi Z, Fitos I, Simonyi M (2004) Curr Drug Discov Tech 1:133–153

    Article  CAS  Google Scholar 

  45. Zsila F, Bikádi Z, Simonyi M (2003) Tetrahedron Asymmetry 14:2433–2444

    Article  CAS  Google Scholar 

  46. Zsila F, Bikádi Z, Simonyi M (2003) Biochem Biophys Res Commun 301:776–782

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports of Research Councils of Isfahan and Tehran Universities are gratefully acknowledged. The authors are also very thankful for valuable English editing of manuscript by Professor B. Bastani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdol-Khalegh Bordbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, F., Bordbar, AK., Divsalar, A. et al. Analysis of Binding Interaction of Curcumin and Diacetylcurcumin with Human and Bovine Serum Albumin Using Fluorescence and Circular Dichroism Spectroscopy. Protein J 28, 189–196 (2009). https://doi.org/10.1007/s10930-009-9184-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9184-1

Keywords

Navigation