Skip to main content
Log in

Modification of Axial Fiber Contact Residues Impact Sickle Hemoglobin Polymerization by Perturbing a Network of Coupled Interactions

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The identity of intermolecular contact residues in sickle hemoglobin (HbS) fiber is largely known. However, our knowledge about combinatorial effects of two or more contact sites or the mechanistic basis of such effects is rather limited. Lys16, His20, and Glu23 of the α-chain occur in intra-double strand axial contacts in the sickle hemoglobin (HbS) fiber. Here we have constructed two novel double mutants, HbS (K16Q/E23Q) and (H20Q/E23Q), with a view to delineate cumulative impact of interactions emanating from the above contact sites. Far-UV and visible region CD spectra of the double mutants were similar to the native HbS indicating the presence of native-like secondary and tertiary structure in the mutants. The quaternary structures in both the mutants were also preserved as judged by the derivative UV spectra of liganded (oxy) and unliganded (deoxy) forms of the double mutants. However, the double mutants displayed interesting polymerization behavior. The polymerization behaviour of the double mutants was found to be non-additive of the individual single mutants. While HbS (H20Q/E23Q) showed inhibitory effect similar to that of HbS (E23Q), the intrinsic inhibitory propensity of the associated single mutants was totally quelled in HbS (K16Q/E23Q) double mutant. Molecular dynamics (MD) simulations studies of the isolated α-chains as well as a module of the fiber containing the double and associated single mutants suggested that these contact sites at the axial interface of the fiber impact HbS polymerization through a coupled interaction network. The overall results demonstrate a subtle role of dynamics and electrostatics in the polymer formation and provide insights about interaction-linkage in HbS fiber assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

Hb:

hemoglobin

HbS:

sickle hemoglobin

HMB:

hydroxymercuricbenzoic acid

FPLC:

fast protein liquid chromatography

RPHPLC:

reverse-phase high performance liquid chromatography

MD:

molecular dynamics

CD:

circular dichroism

Far-UV:

far-ultraviolet

DFD:

distance frequency distribution

References

  • Benesch R. E., Kwong S., Benesch R. (1982). Nature 299: 231–234

    Article  CAS  Google Scholar 

  • Benesch R. E., Kwong S., Benesch R., Edalji R. (1977). Nature 269: 772–775

    Article  CAS  Google Scholar 

  • Berendsen H. J. C., van der Spoel D., van Drunen R. (1995). Comp. Phys. Comm. 91: 43–56

    Article  CAS  Google Scholar 

  • Bookchin R. M., Balaz T., Nagel R. L., Tellez I. (1977). Nature 269: 526–527

    Article  CAS  Google Scholar 

  • Bookchin R. M., Balaz T., Wang Z., Joseph R., Lew V.L. (1999). J. Biol. Chem. 274: 6689–6697

    Article  CAS  Google Scholar 

  • Bucci E. (1981). Methods Enzymol. 76: 97–106

    CAS  Google Scholar 

  • Cretegny, I., and Edelstein, S. J. (1993). J. Mol. Biol. 230: 733–738

    Article  CAS  Google Scholar 

  • Eaton W. A., Hofrichter J. (1990). Adv. Prot. Chem. 40: 63–279

    CAS  Google Scholar 

  • Harrington D. J., Adachi K., Royer W. E. Jr. (1997). J. Mol. Biol. 272: 398–407

    Article  CAS  Google Scholar 

  • Hery S., Genest D., Smith J. C. (1997). J. Chem. Inf. Comput. Sci. 37: 1011–1017

    Article  CAS  Google Scholar 

  • Himanen J. P., Mirza U. A., Chait B. T., Bookchin R. M., Manning J. M. (1996). J. Biol. Chem. 271: 25152–25156

    Article  CAS  Google Scholar 

  • Imai K., Tsuneshige A., Harano T., Harano K. (1989). J. Biol. Chem. 264: 11174–11180

    CAS  Google Scholar 

  • Li X., Briehl R. W., Bookchin R. M., Josephs R., Wei B., Manning J. M., Ferrone F. A. (2002). J. Biol. Chem. 277: 13479–13487

    Article  CAS  Google Scholar 

  • Li X., Himanen J. P., Martin de Llano J. J., Padovan J. C., Chait B. T., Manning J. M. (1999). Biotechnol. Appl. Biochem. 29: 165–184

    CAS  Google Scholar 

  • Lindahl E., Hess B., van der Spoel D. (2001). J. Mol. Model 7: 306–317

    CAS  Google Scholar 

  • Lovell S. C., Davis I. W., Arendall W. B. III, de Bakker P. I., Word J. M., Prisant M. G., Richardson J. S., Richardson D. C. (2003). Proteins Strut. Func. Genet. 15: 437–450

    Article  CAS  Google Scholar 

  • Manning J. M., Dumoulin A., Li X., Manning L. R. (1998). J. Biol. Chem. 273: 19359–19362

    Article  CAS  Google Scholar 

  • Nacharaju P., Roy R. P., White S. P., Nagel R. L., Acharya A. S. (1997). J. Biol. Chem. 272: 27869–27876

    Article  CAS  Google Scholar 

  • Nagel R. L., Johnson J., Bookchin R. M., Garel M. C., Rosa J., Schiliro G., Wajcman H., Labie D., Moo-Penn W., Castro O. (1980). Nature 283: 832–834

    Article  CAS  Google Scholar 

  • Padlan E. A., Love W. E. (1985). J. Biol. Chem. 260: 8280–8291

    CAS  Google Scholar 

  • Roy R. P., Acharya A. S. (1994). Methods Enzymol. 231: 194–215

    Article  CAS  Google Scholar 

  • Sivaram M. V., Sudha R., Roy R. P. (2001). J. Biol. Chem. 276: 18209–18215.

    Article  CAS  Google Scholar 

  • Srinivasulu,, M., Perumalsamy, K., Upadhyay, R., Manjula, B. N., Feiring, S., Alami, R., Bouhassira, E., Fabry, M. E., Nagel., R. L., and Acharya, A. S. (2006). Protein J. (10.1007/s10930-006-9034-3)

  • Sudha R., Anantharaman L., Sivaram M. V. S., Mirsamadi. N., Choudhury D., Lohiya N. K., Gupta R. B., Roy R. P. (2004). J. Biol. Chem. 279: 20018–20027

    Article  CAS  Google Scholar 

  • Watowich S. J., Gross L. J., Josephs R. (1993). J. Struct. Biol. 111: 161–179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first two authors (SB and NM) have contributed equally to this work. SB and LA are Senior Research Fellows of the Council of Scientific and Industrial Research, India. NM is a recipient of a fellowship from the University Grants Commission (UGC), India. This work was supported by core grants to the NII from the Department of Biotechnology, Government of India, and to JNU by the UGC under its UPOE program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Devapriya Choudhury or Rajendra P. Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Mirsamadi, N., Anantharaman, L. et al. Modification of Axial Fiber Contact Residues Impact Sickle Hemoglobin Polymerization by Perturbing a Network of Coupled Interactions. Protein J 26, 445–455 (2007). https://doi.org/10.1007/s10930-007-9084-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-007-9084-1

Keywords

Navigation