Skip to main content
Log in

Indirect pharmacodynamic models for responses with circadian removal

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Rhythmicity in baseline responses over a 24-h period for an indirect pharmacological effect R(t) can arise from either a periodic time-dependent input rate \( k_{in} \left( t \right) \) or a periodic time-dependent loss constant \( k_{out} \left( t \right) \). If either \( k_{in} \left( t \right) \) or \( k_{out} \left( t \right) \) follows some nonstationary biological rhythm (e.g., circadian), then the response R(t) also displays a periodic behavior. Indirect response models assuming time-dependent input rates \( \left[ {k_{in} \left( t \right)} \right] \) have been utilized to capture drug effects on various physiological responses such as hormone suppression, immune cell trafficking, and gene expression in tissues. This paradigm was extended to consider responses with circadian-controlled loss \( \left[ {k_{out} \left( t \right)} \right] \) mechanisms. Theoretical equations describing this model are presented and simulations were performed to examine expected response behaviors. The model was able to capture the chronobiology and pharmacodynamics of applicable drug responses, including the uricosuric effects of lesinurad in humans, suppression of the beta amyloid (Aβ) peptide by a gamma-secretase inhibitor in mouse brain, and the modulation of extracellular dopamine by a dopamine transporter inhibitor in rat brain. This type of model has a mechanistic basis and shows utility for capturing drug responses displaying nonstationary baselines controlled by removal mechanism(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sukumaran S, Almon RR, DuBois DC, Jusko WJ (2010) Circadian rhythms in gene expression: relationship to physiology, disease, drug disposition and drug action. Adv Drug Deliv Rev 62:904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21:457–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jusko WJ, Ko HC (1994) Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin Pharmacol Ther 56:406–419

    Article  CAS  PubMed  Google Scholar 

  4. Sharma A, Jusko WJ (1998) Characteristics of indirect pharmacodynamic models and applications to clinical drug responses. Br J Clin Pharmacol 45:229–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chakraborty A, Krzyzanski W, Jusko WJ (1999) Mathematical modeling of circadian cortisol concentrations using indirect response models: comparison of several methods. J Pharmacokinet Biopharm 27:23–43

    Article  CAS  PubMed  Google Scholar 

  6. Bruguerolle B (1998) Chronopharmacokinetics. Current status. Clin Pharmacokinet 35:83–94

    Article  CAS  PubMed  Google Scholar 

  7. Harris BE, Song R, Soong SJ, Diasio RB (1990) Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res 50:197–201

    CAS  PubMed  Google Scholar 

  8. Harris BE, Song RL, Soong SJ, Diasio RB (1989) Circadian variation of 5-fluorouracil catabolism in isolated perfused rat liver. Cancer Res 49:6610–6614

    CAS  PubMed  Google Scholar 

  9. Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR, Bateman RJ, Holtzman DM (2012) Disruption of the sleep-wake cycle and diurnal fluctuation of beta-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med 4:150ra122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Q, Yu X, Li L, Zheng J (2014) Inhibition of amyloid-beta aggregation in Alzheimer’s disease. Curr Pharm Des 20:1223–1243

    Article  CAS  PubMed  Google Scholar 

  11. Moussa CE (2017) Beta-secretase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease. Expert Opin Investig Drugs 26:1131–1136

    Article  CAS  PubMed  Google Scholar 

  12. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    Article  CAS  PubMed  Google Scholar 

  14. Boespflug EL, Iliff JJ (2018) The emerging relationship between interstitial fluid-cerebrospinal fluid exchange, amyloid-beta, and sleep. Biol Psychiatry 83:328–336

    Article  PubMed  Google Scholar 

  15. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Menard J, Zetterberg H, Wisniewski T, de Leon MJ (2016) Clearance systems in the brain—implications for Alzheimer disease. Nat Rev Neurol 12:248

    Article  PubMed  Google Scholar 

  16. Castaneda TR, de Prado BM, Prieto D, Mora F (2004) Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J Pineal Res 36:177–185

    Article  CAS  PubMed  Google Scholar 

  17. Ferris MJ, España RA, Locke JL, Konstantopoulos JK, Rose JH, Chen R, Jones SR (2014) Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proc Natl Acad Sci USA 111:E2751–E2759

    Article  CAS  PubMed  Google Scholar 

  18. Sleipness EP, Sorg BA, Jansen HT (2007) Diurnal differences in dopamine transporter and tyrosine hydroxylase levels in rat brain: dependence on the suprachiasmatic nucleus. Brain Res 1129:34–42

    Article  CAS  PubMed  Google Scholar 

  19. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V (2016) Regulation of uric acid metabolism and excretion. Int J Cardiol 213:8–14

    Article  PubMed  Google Scholar 

  20. So A, Thorens B (2010) Uric acid transport and disease. J Clin Invest 120:1791–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sennels HP, Jorgensen HL, Goetze JP, Fahrenkrug J (2012) Rhythmic 24-h variations of frequently used clinical biochemical parameters in healthy young males—the Bispebjerg study of diurnal variations. Scand J Clin Lab Invest 72:287–295

    Article  CAS  PubMed  Google Scholar 

  22. Yu KH, Luo SF, Tsai WP, Huang YY (2004) Intermittent elevation of serum urate and 24-h urinary uric acid excretion. Rheumatology 43:1541–1545

    Article  PubMed  Google Scholar 

  23. Koopman MG, Koomen GC, Krediet RT, de Moor EA, Hoek FJ, Arisz L (1989) Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci (Lond) 77:105–111

    Article  CAS  Google Scholar 

  24. Diaz-Torne C, Perez-Herrero N, Perez-Ruiz F (2015) New medications in development for the treatment of hyperuricemia of gout. Curr Opin Rheumatol 27:164–169

    Article  CAS  PubMed  Google Scholar 

  25. D’Argenio D, Schumitzky A, Wang X (2009) ADAPT 5 User’s Guide: Pharmacokinetic/pharmacodynamic Systems Analysis Software. BioMedical Simulations Resource, Los Angeles

    Google Scholar 

  26. Sun YN, Jusko WJ (1999) Role of baseline parameters in determining indirect pharmacodynamic responses. J Pharm Sci 88:987–990

    Article  CAS  PubMed  Google Scholar 

  27. Toyn JH, Thompson LA, Lentz KA, Meredith JE Jr, Burton CR, Sankaranararyanan S, Guss V, Hall T, Iben LG, Krause CM, Krause R, Lin XA, Pierdomenico M, Polson C, Robertson AS, Denton RR, Grace JE, Morrison J, Raybon J, Zhuo X, Snow K, Padmanabha R, Agler M, Esposito K, Harden D, Prack M, Varma S, Wong V, Zhu Y, Zvyaga T, Gerritz S, Marcin LR, Higgins MA, Shi J, Wei C, Cantone JL, Drexler DM, Macor JE, Olson RE, Ahlijanian MK, Albright CF (2014) Identification and preclinical pharmacology of the gamma-secretase modulator BMS-869780. Int J Alzheimers Dis 2014:431858

    PubMed  PubMed Central  Google Scholar 

  28. Lu Y, Barton HA, Leung L, Zhang L, Hajos-Korcsok E, Nolan CE, Liu J, Becker SL, Wood KM, Robshaw AE, Taylor CK, O’Neill BT, Brodney MA, Riddell D (2013) Cerebrospinal fluid beta-amyloid turnover in the mouse, dog, monkey and human evaluated by systematic quantitative analyses. Neurodegener Dis 12:36–50

    Article  CAS  PubMed  Google Scholar 

  29. Shen Z, Rowlings C, Kerr B, Hingorani V, Manhard K, Quart B, Yeh LT, Storgard C (2015) Pharmacokinetics, pharmacodynamics, and safety of lesinurad, a selective uric acid reabsorption inhibitor, in healthy adult males. Drug Des Devel Ther 9:3423–3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Campion DS, Bluestone R, Klinenberg JR (1973) Uric acid: characterization of its interaction with human serum albumin. J Clin Invest 52:2383–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raje S, Cao J, Newman AH, Gao H, Eddington ND (2003) Evaluation of the blood-brain barrier transport, population pharmacokinetics, and brain distribution of benztropine analogs and cocaine using in vitro and in vivo techniques. J Pharmacol Exp Ther 307:801–808

    Article  CAS  PubMed  Google Scholar 

  32. Raje S, Cornish J, Newman AH, Cao J, Katz JL, Eddington ND (2005) Pharmacodynamic assessment of the benztropine analogues AHN-1055 and AHN-2005 using intracerebral microdialysis to evaluate brain dopamine levels and pharmacokinetic/pharmacodynamic modeling. Pharm Res 22:603–612

    Article  CAS  PubMed  Google Scholar 

  33. Yavich L, Forsberg MM, Karayiorgou M, Gogos JA, Mannisto PT (2007) Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J Neurosci 27:10196–10209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gries JM, Benowitz N, Verotta D (1996) Chronopharmacokinetics of nicotine. Clin Pharmacol Ther 60:385–395

    Article  CAS  PubMed  Google Scholar 

  35. Lemmer B, Nold G (1991) Circadian changes in estimated hepatic blood flow in healthy subjects. Br J Clin Pharmacol 32:627–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Levi F, Schibler U (2007) Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628

    Article  CAS  PubMed  Google Scholar 

  37. Sukumaran S, Xue B, Jusko WJ, DuBois DC, Almon RR (2010) Circadian variations in gene expression in rat abdominal adipose tissue and relationship to physiology. Physiol Genomics 42A:141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heegaard NHH, Carlsen AL, Lilje B, Ng KL, Rønne ME, Jørgensen HL, Sennels H, Fahrenkrug J (2016) Diurnal variations of human circulating cell-free micro-RNA. PLoS One 11:e0160577–e0160577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koch G, Schropp J (2018) Delayed logistic indirect response models: realization of oscillating behavior. J Pharmacokinet Pharmacodyn 45:49–58

    Article  PubMed  Google Scholar 

  40. Sukumaran S, Jusko WJ, DuBois DC, Almon RR (2011) Mechanistic modeling of the effects of glucocorticoids and circadian rhythms on adipokine expression. J Pharmacol Exp Ther 337:734–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boden G, Ruiz J, Urbain JL, Chen X (1996) Evidence for a circadian rhythm of insulin secretion. Am J Physiol 271:E246–252

    CAS  PubMed  Google Scholar 

  42. Krzyzanski W, Chakraborty A, Jusko WJ (2000) Algorithm for application of Fourier analysis for biorhythmic baselines of pharmacodynamic indirect response models. Chronobiol Int 17:77–93

    Article  CAS  PubMed  Google Scholar 

  43. Krzyzanski W, Jusko WJ (2001) Indirect pharmacodynamic models for responses with multicompartmental distribution or polyexponential disposition. J Pharmacokinet Pharmacodyn 28:57–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health - National Institute of General Medical Sciences [Grant GM24211].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendix

Appendix

Circadian input

In many pharmacodynamic systems the input rate of measured variables is regulated by endogenous biorhythmic processes such as circadian rhythms [1]. Then \( k_{in} \) varies with time \( k_{in} = k_{in} \left( t \right) \) and consequently the response also exhibits a similar biorhythmic pattern. The simplest biorhythmic response \( R_{b} \left( t \right) \) can be described by the cosine function:

$$ R_{b} \left( t \right) = R_{m} + R_{a} \cos \left( {\frac{2\pi }{T}(t - t_{p} )} \right) $$
(13)

where \( R_{m} \) is the mean baseline (mesor), \( R_{a} \) is the amplitude \( \left( {R_{m} > R_{a} } \right) \), \( t_{p} \) is the peak time (acrophase), and \( T = 24\,{\text{h}} \).In the case of a circadian input mechanism, the indirect response model in Fig. 1 is given by

$$ \frac{{dR_{b} \left( t \right)}}{dt} = k_{in} \left( t \right) - k_{out} \cdot R_{b} \left( t \right) $$
(14)

where \( k_{in} \left( t \right) \) is circadian function of time and \( k_{out} \) is first-order constant. Equation (14) can be re-arranged to express \( k_{in} \left( t \right) \) as

$$ k_{in} \left( t \right) = k_{out} \cdot R_{b} \left( t \right) + \frac{{dR_{b} }}{dt}\left( t \right) $$
(15)

Substituting Eqs. (13) into (15),

$$ k_{in} \left( t \right) = k_{out} R_{m} + k_{out} R_{a} cos\left( {\frac{2\pi }{T}\left( {t - t_{p} } \right)} \right) + \frac{d}{dt} \left( R_{m} + R_{a} cos\left( {\frac{2\pi }{T}(t - t_{p} )} \right) \right) $$
(16)

Taking the derivative of \( \frac{{dR_{b} }}{dt}\left( t \right) \) in Eq. (16) yields,

$$ k_{in} \left( t \right) = k_{out} R_{m} + k_{out} R_{a} \cos \left( {\frac{2\pi }{T}\left( {t - t_{p} } \right)} \right) - \frac{2\pi }{T}R_{a} \sin \left( {\frac{2\pi }{T}\left( {t - t_{p} } \right)} \right) $$
(17)

Circadian output

Some mechanisms controlling indirect responses and endogenous markers used in pharmacodynamic modeling can exhibit circadian variations in their rate of removal from the system [1]. Then \( k_{out} \) varies with time \( k_{out} \) = \( k_{out} \left( t \right). \) Unlike the case of systems with \( k_{in} \left( t \right) \), however, the pattern of the circadian response is not expected to follow a biorhythmic pattern similar to \( k_{out} \left( t \right). \) In the case of a circadian removal mechanism, the indirect response model in Fig. 1 is given by

$$ \frac{{dR_{b} \left( t \right)}}{dt} = k_{in} - k_{out} \left( t \right) \cdot R_{b} \left( t \right) $$
(18)

where \( k_{out} \left( t \right) \) is a circadian function of time and \( k_{in} \) a zero-order constant. Equation (18) can be re-arranged to express \( k_{out} \left( t \right) \) as

$$ k_{out} \left( t \right) = \frac{{k_{in} - \frac{{dR_{b} }}{dt}\left( t \right)}}{{R_{b} \left( t \right)}} $$
(19)

Substituting Eq. (13) into (19),

$$ k_{out} \left( t \right) = \frac{{k_{in} - \frac{d}{dt} \left( R_{m} + R_{a} \cos \left( {\frac{2\pi }{T}(t - t_{p} )} \right) \right)}}{{R_{m} + R_{a} \cos \left( {\frac{2\pi }{T}(t - t_{p} )} \right)}} $$
(20)

Taking the derivative of \( \frac{{dR_{b} }}{dt}\left( t \right) \) in Eq. (20),

$$ k_{out} \left( t \right) = \frac{{k_{in} + \frac{2\pi }{T}R_{a} \sin \left( {\frac{2\pi }{T}\left( {t - t_{p} } \right)} \right)}}{{R_{m} + R_{a} \cos \left( {\left. {\frac{2\pi }{T}(t - t_{p} } \right)} \right)}} $$
(21)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayyar, V.S., Krzyzanski, W. & Jusko, W.J. Indirect pharmacodynamic models for responses with circadian removal. J Pharmacokinet Pharmacodyn 46, 89–101 (2019). https://doi.org/10.1007/s10928-019-09620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-019-09620-z

Keywords

Navigation