Skip to main content
Log in

A geometrical approach to the PKPD modelling of inhaled bronchodilators

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The present work introduces a new method to model the pharmacokinetics (PK) and pharmacodynamics (PD) of an inhaled dose of bronchodilator, alternative to classic compartmental representations or computational fluid dynamics. A five compartment PK model comprising alimentary tract absorption (gut), bronchial tree mucosa, bronchial muscles, plasma, and elimination/excretion pathways has been developed. Many anatomical and physiological features of the bronchial tree depend on bronchial generation or on mean distance from the larynx. Among these are diameters, resistances, and receptor density, which determine together the local response to the inhaled drug; integrating these local responses over the whole bronchial tree allows an approximation of total bronchodilator response and airflow resistance. While the PK part of the model reflects classical compartmental assumptions, the PD part adds a simplified geometrical and functional description of the bronchial tree to a typical empirical model of local effect on bronchial muscle, leading to the direct computation of the approximate forced expiratory volume in 1 s (FEV1). In the present work the construction of the model is detailed, with reference to literature data. Simulation of a hypothetical asthmatic subject is employed to illustrate the behaviour of the model in representing the evolution over time of the distribution and pharmacological effect of an inhaled dose of a bronchodilator. The relevance of particle size and drug formulation diffusivity on therapeutic efficacy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agoram BM, Milligan PA, van der Graaf PH (2008) A non-parametric method to analyse time-course of effect in the absence of pharmacokinetic data: application to inhaled bronchodilators. Eur J Pharm Sci 34:250–256

    Article  PubMed  CAS  Google Scholar 

  2. Anjilvel S, Asgharian B (1995) A multiple-path model of particle deposition in the rat lung. Fundam Appl Toxicol 28:41–50

    Article  PubMed  CAS  Google Scholar 

  3. Applied Research Associates, Inc. Multiple-path particle dosimetry model (MPPD v. 2.11). Source: http://www.ara.com/products/mppd.htm

  4. Barnes PJ (2004) Distribution of receptor targets in the lung. Proc Am Thorac Soc 1:345–351

    Article  PubMed  CAS  Google Scholar 

  5. Chalupa DC, Morrow PE, Oberdorster G, Utell MJ, Frampton MW (2004) Ultrafine particle deposition in subjects with asthma. Environ Health Perspect 112:879–882

    Article  PubMed  CAS  Google Scholar 

  6. Crapo RO, Morris AH, Gardner RM (1981) Reference spirometric values using techniques and equipment that meet ATS recommendations. Am Rev Respirat Dis 123:659–664

    CAS  Google Scholar 

  7. Derendorf H (2007) Pharmacokinetic and pharmacodynamic properties of inhaled ciclesonide. J Clin Pharmacol 47:782–789

    Article  PubMed  CAS  Google Scholar 

  8. Derendorf H, Meibohm B (1999) Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res 16:176–185

    Article  PubMed  CAS  Google Scholar 

  9. Fleming JS, Hashish AH, Conway JH, Nassim MA, Holgate ST, Halson P, Moore E, Bailey AG, Martonen TB (1996) Assessment of deposition of inhaled aerosol in the respiratory tract of man using three-dimensional multimodality imaging and mathematical modeling. J Aerosol Med 9:317–327

    Article  PubMed  CAS  Google Scholar 

  10. Grimby G, Soderholm B (1963) Spirometric studies in normal subjects. III. Static lung volumes and maximum voluntary ventilation in adults with a note on physical fitness. Acta Med Scand 173:199–206

    Google Scholar 

  11. Jaafar-Maalej C, Andrieu V, Elaissari A, Fessi H (2009) Assessment methods of inhaled aerosols: technical aspects and applications. Expert Opin Drug Deliv 6:941–959

    Article  PubMed  CAS  Google Scholar 

  12. Kawashiro T, Carles AC, Perry SF, Piiper J (1975) Diffusivity of various inert gases in rat skeletal muscle. Pflugers Arch 359:219–230

    Article  PubMed  CAS  Google Scholar 

  13. Knight V, Yu CP, Gilbert BE, Divine GW (1988) Estimating the dosage of ribavirin aerosol according to age and other variables. J Infect Dis 158:443–448

    Article  PubMed  CAS  Google Scholar 

  14. Knudson RJ, Lebowitz MD, Holberg CJ, Burrows B (1983) Changes in the normal maximal expiratory flow-volume curve with growth and aging. Am Rev Respirat Dis 127:725–734

    CAS  Google Scholar 

  15. Levitzky MG (2007) Pulmonary physiology. McGraw-Hill Medical Publishing, New York

    Google Scholar 

  16. Martonen TB, Hwang D, Guan X, Fleming JS (1998) Supercomputer description of human lung morphology for imaging analysis. J Nucl Med 39:745–750

    PubMed  CAS  Google Scholar 

  17. Martonen TB, Schroeter JD, Fleming JS (2007) 3D in silico modeling of the human respiratory system for inhaled drug delivery and imaging analysis. J Pharm Sci 96:603–617

    Article  PubMed  CAS  Google Scholar 

  18. Meltzer EO, Kuna P, Nolte H, Nayak S, Laforce C (2011) Mometasone furoate/formoterol reduces asthma deteriorations and improves lung function. Eur Respir J

  19. Morris JF (1983) Citation classic: spirometric standards for healthy nonsmoking adults. Current contents/life sciences 21

  20. Musante CJ, Schroeter JD, Rosati JA, Crowder TM, Hickey AJ, Martonen TB (2002) Factors affecting the deposition of inhaled porous drug particles. J Pharm Sci 91:1590–1600

    Article  PubMed  CAS  Google Scholar 

  21. Pedley TJ, Schroter RC, Sudlow MF (1970) The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir Physiol 9:387–405

    Article  PubMed  CAS  Google Scholar 

  22. Persons DD, Hess GD, Muller WJ, Scherer PW (1987) Airway deposition of hygroscopic heterodispersed aerosols: results of a computer calculation. J Appl Physiol 63:1195–1204

    PubMed  CAS  Google Scholar 

  23. Roberts CM, Macrae KD, Winning AJ, Adams L, Seed WA (1991) Reference values and prediction equations for normal lung-function in a nonsmoking white urban-population. Thorax 46:643–650

    Article  PubMed  CAS  Google Scholar 

  24. Rohatagi S, Arya V, Zech K, Nave R, Hochhaus G, Jensen BK, Barrett JS (2003) Population pharmacokinetics and pharmacodynamics of ciclesonide. J Clin Pharmacol 43:365–378

    Article  PubMed  CAS  Google Scholar 

  25. Stinson JM, Mcpherson GL, Hicks K, Scott V, Sykes R, Cobbs W (1979) Spirometric standards for healthy black adults. Am Rev Respirat Dis 119:237

    Google Scholar 

  26. Stober W, Morrow PE, Hoover MD (1989) Compartmental modeling of the long-term retention of insoluble particles deposited in the alveolar region of the lung. Fundam Appl Toxicol 13:823–842

    Article  PubMed  CAS  Google Scholar 

  27. Stuart BO (1973) Deposition of inhaled aerosols. Arch Intern Med 131:60–73

    Article  PubMed  CAS  Google Scholar 

  28. Tran CL, Jones AD, Cullen RT, Donaldson K (1999) Mathematical modeling of the retention and clearance of low-toxicity particles in the lung. Inhal Toxicol 11:1059–1076

    Article  PubMed  CAS  Google Scholar 

  29. van den Berg BT, Derks MG, Koolen MG, Braat MC, Butter JJ, van Boxtel CJ (1999) Pharmacokinetic/pharmacodynamic modelling of the eosinopenic and hypokalemic effects of formoterol and theophylline combination in healthy men. Pulm Pharmacol Ther 12:185–192

    Article  PubMed  Google Scholar 

  30. Weibel ER (1963) Morphometry of the human lung. Springer, Heidelberg

    Google Scholar 

  31. Weibel ER, Gomez DM (1962) Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science 137:577–581

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank an anonymous Reviewer whose insightful and detailed comments were instrumental in improving the model and substantially changing the manuscript. This research has been supported by Novartis Pharma AG, Basel, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea De Gaetano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaz, C., Cremona, G., Panunzi, S. et al. A geometrical approach to the PKPD modelling of inhaled bronchodilators. J Pharmacokinet Pharmacodyn 39, 415–428 (2012). https://doi.org/10.1007/s10928-012-9259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-012-9259-z

Keywords

Navigation