Skip to main content
Log in

Ultralight and Superelastic Nanofiber Aerogels with In-Situ Loaded Polypyrrole for High-Efficient Cr(VI) Adsorption

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Constructing 3-D nanomaterial-based adsorbents with good mechanical properties has attracted increasing attention. This paper reports a simple strategy to prepare ultralight and superelastic 3-D aerogels as efficient adsorbents for heavy metal Cr(VI) in wastewater by in-situ loading of polypyrrole on cellulose acetate nanofibers followed by freeze-drying method. The obtained aerogel possesses obvious 3-D porous and cross-linked structure, in which polypyrrole is uniformly coated on the nanofiber surface. Besides, the aerogel shows good mechanical properties with high compressive strength of 14.49 kPa, and can be processed into any desired shape. Especially, due to the presence of large specific surface area and high porosity, the obtained nanofiber aerogel shows significant Cr(VI) adsorption with maximum adsorption capacity of 244.65 mg/g. The present work proposes a high-quality nanofiber aerogel for efficiently adsorbing Cr(VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ganesamoorthy R, Vadivel KV, Kumar R et al (2021) Aerogels for water treatment: a review. J Clean Prod 329:129713. https://doi.org/10.1016/j.jclepro.2021.129713

    Article  CAS  Google Scholar 

  2. Liang C, Fu F, Tang B (2021) Mn-incorporated ferrihydrite for Cr(VI) immobilization: adsorption behavior and the fate of Cr(VI) during aging. J Hazard Mater 417:126073. https://doi.org/10.1016/j.jhazmat.2021.126073

    Article  CAS  Google Scholar 

  3. Sessarego S, Rodrigues SC, Ye X et al (2019) Phosphonium-enhanced chitosan for Cr(VI) adsorption in wastewater treatment. Carbohydr Polym 211:249–256. https://doi.org/10.1016/j.carbpol.2019.02.003

    Article  CAS  Google Scholar 

  4. Gheju M, Balcu L, Mosoarca G (2016) Removal of Cr(VI) from aqueous solutions by adsorption on MnO2. J Hazard Mater 310:270–277. https://doi.org/10.1016/j.jhazmat.2016.02.042

    Article  CAS  Google Scholar 

  5. Liang H, Song B, Peng P et al (2019) Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr(VI). Chem Eng J 367:9–16. https://doi.org/10.1016/j.cej.2019.02.121

    Article  CAS  Google Scholar 

  6. Dash B, Jena SK, Rath SS (2022) Adsorption of Cr (III) and Cr (VI) ions on muscovite mica: experimental and molecular modeling studies. J Mol Liq 357:119116. https://doi.org/10.1016/j.molliq.2022.119116

    Article  CAS  Google Scholar 

  7. Rathnayake SI, Martens WN, Xi Y et al (2017) Remediation of Cr (VI) by inorganic–organic clay. J Colloid Interfaces Sci 490:163–173. https://doi.org/10.1016/j.jcis.2016.11.070

    Article  CAS  Google Scholar 

  8. Xie B, Shan C, Xu Z et al (2017) One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: reduction to Cr(III) and in situ Cr(III) precipitation. Chem Eng J 308:791–797. https://doi.org/10.1016/j.cej.2016.09.123

    Article  CAS  Google Scholar 

  9. Liu H, Tian G, Wang W et al (2021) Carbon fiber-based flow-through electrode system (FES) for Cr(VI) removal at near neutral pHs via Cr(VI) reduction and in-situ adsorption of Cr(III) precipitates. Chem Eng J 420:127622. https://doi.org/10.1016/j.cej.2020.127622

    Article  CAS  Google Scholar 

  10. Choudhury PR, Majumdar S, Sahoo GC et al (2018) High pressure ultrafiltration CuO/hydroxyethyl cellulose composite ceramic membrane for separation of Cr (VI) and Pb (II) from contaminated water. Chem Eng J 336:570–578. https://doi.org/10.1016/j.cej.2017.12.062

    Article  CAS  Google Scholar 

  11. Akram M, Bhatti HN, Iqbal M et al (2017) Biocomposite efficiency for Cr(VI) adsorption: kinetic, equilibrium and thermodynamics studies. J Environ Chem Eng 5:400–411. https://doi.org/10.1016/j.jece.2016.12.002

    Article  CAS  Google Scholar 

  12. Luo T, Tian X, Yang C et al (2017) Polyethylenimine-functionalized corn bract, an agricultural waste material, for efficient removal and recovery of Cr(VI) from aqueous solution. J Agric Food Chem 65:7153–7158. https://doi.org/10.1021/acs.jafc.7b02699

    Article  CAS  Google Scholar 

  13. Li H, Gao P, Cui J et al (2018) Preparation and Cr(VI) removal performance of corncob activated carbon. Environ Sci Pollut Res 25:20743–20755. https://doi.org/10.1007/s11356-018-2026-y

    Article  CAS  Google Scholar 

  14. Mishra PK, Kumar R, Rai PK (2018) Surfactant-free one-pot synthesis of CeO2, TiO2 and Ti@Ce oxide nanoparticles for the ultrafast removal of Cr(VI) from aqueous media. Nanoscale 10:7257–7269. https://doi.org/10.1039/C7NR09563E

    Article  CAS  Google Scholar 

  15. Joe-Wong C, Brown GE, Maher K (2017) Kinetics and products of chromium(VI) reduction by iron(II/III)-bearing clay minerals. Environ Sci Technol 51:9817–9825. https://doi.org/10.1021/acs.est.7b02934

    Article  CAS  Google Scholar 

  16. Reis ES, Gorza FD, Pedro GC et al (2021) (Maghemite/Chitosan/Polypyrrole) nanocomposites for the efficient removal of Cr (VI) from aqueous media. J Environ Chem Eng 9:104893. https://doi.org/10.1016/j.jece.2020.104893

    Article  CAS  Google Scholar 

  17. Li Y, Gao Y, Zhang Q et al (2021) Flexible and free-standing pristine polypyrrole membranes with a nanotube structure for repeatable Cr(VI) ion removal. Sep Purif Technol 258:117981. https://doi.org/10.1016/j.seppur.2020.117981

    Article  CAS  Google Scholar 

  18. Zhan Y, He S, Wan X et al (2018) Easy-handling bamboo-like polypyrrole nanofibrous mats with high adsorption capacity for hexavalent chromium removal. J Colloid Interfaces Sci 529:385–395. https://doi.org/10.1016/j.jcis.2018.06.033

    Article  CAS  Google Scholar 

  19. Zhang Y, Zhang D, Zhou L et al (2018) Polypyrrole/reduced graphene oxide aerogel particle electrodes for high-efficiency electro-catalytic synergistic removal of Cr(VI) and bisphenol A. Chem Eng J 336:690–700. https://doi.org/10.1016/j.cej.2017.11.109

    Article  CAS  Google Scholar 

  20. Fang W, Jiang X, Luo H et al (2018) Synthesis of graphene/SiO2@polypyrrole nanocomposites and their application for Cr(VI) removal in aqueous solution. Chemosphere 197:594–602. https://doi.org/10.1016/j.chemosphere.2017.12.163

    Article  CAS  Google Scholar 

  21. Bhaumik M, Agarwal S, Gupta VK et al (2016) Enhanced removal of Cr(VI) from aqueous solutions using polypyrrole wrapped oxidized MWCNTs nanocomposites adsorbent. J Colloid Interfaces Sci 470:257–267. https://doi.org/10.1016/j.jcis.2016.02.054

    Article  CAS  Google Scholar 

  22. Bhaumik M, Maity A, Srinivasu V et al (2011) Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J Hazard Mater 190:381–390. https://doi.org/10.1016/j.jhazmat.2011.03.062

    Article  CAS  Google Scholar 

  23. Si Y, Yu J, Tang X et al (2014) Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 5:1–9. https://doi.org/10.1038/ncomms6802

    Article  CAS  Google Scholar 

  24. Wang X, Yu J, Ding B et al (2016) Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Mater Today 19:403–414. https://doi.org/10.1016/j.mattod.2015.11.010

    Article  CAS  Google Scholar 

  25. Liao Y, Yang F, Si Y et al (2021) Nanoflake-engineered zirconic fibrous aerogels with parallel-arrayed conduits for fast nerve agent degradation. Nano Lett 21:8839–8847. https://doi.org/10.1021/acs.nanolett.1c03246

    Article  CAS  Google Scholar 

  26. Lee SP, Ali GA, Algarni H et al (2019) Flake size-dependent adsorption of graphene oxide aerogel. J Mol Liq 277:175–180. https://doi.org/10.1016/j.molliq.2018.12.097

    Article  CAS  Google Scholar 

  27. Fang Y, He H, Dong K et al (2022) Preparation and adsorption properties of hyperbranched polyethyleneimine-cellulose nanofiber aerogel. New J Chem 46:5954–5965. https://doi.org/10.1039/D1NJ06156A

    Article  CAS  Google Scholar 

  28. Oh KW, Kim DK, Kim SH (2009) Ultra-porous flexible PET/aerogel blanket for sound absorption and thermal insulation. Fibers Polym 10:731–737. https://doi.org/10.1007/s12221-010-0731-3

    Article  CAS  Google Scholar 

  29. Cheng C, Li S, Zhao J et al (2013) Biomimetic assembly of polydopamine-layer on graphene: mechanisms, versatile 2D and 3D architectures and pollutant disposal. Chem Eng J 228:468–481. https://doi.org/10.1016/j.cej.2013.05.019

    Article  CAS  Google Scholar 

  30. Li J, Wang R, Su Z et al (2019) Multifunctional Polymer Sponge with Molecule Recognition: Facile Mechanic Induced Separation. Langmuir 35:14920–14928. https://doi.org/10.1021/acs.langmuir.9b02857

    Article  CAS  Google Scholar 

  31. Wang J, Pan K, He Q et al (2013) Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. J Hazard Mater 244–245:121–129. https://doi.org/10.1016/j.jhazmat.2012.11.020

    Article  CAS  Google Scholar 

  32. Zhao G, Zhao H, Shi L et al (2021) In situ loading MnO2 onto 3D aramid nanofiber aerogel as high-performance lead adsorbent. J Colloid Interfaces Sci 600:403–411. https://doi.org/10.1016/j.jcis.2021.05.048

    Article  CAS  Google Scholar 

  33. Zhu J, Lv S, Yang T et al (2020) Facile and green strategy for designing ultralight, flexible, and multifunctional PVA nanofiber-based aerogels. Adv Sustain Syst 4:1900141. https://doi.org/10.1002/adsu.201900141

    Article  CAS  Google Scholar 

  34. Cao X, Zhang J, Chen S et al (2020) 1D/2D Nanomaterials synergistic, compressible, and response rapidly 3d graphene aerogel for piezoresistive sensor. Adv Funct Mater 30:2003618. https://doi.org/10.1002/adfm.202003618

    Article  CAS  Google Scholar 

  35. Zheng S, Jiang L, Zhang C et al (2022) Facile and environment-friendly preparation of high-performance polyimide aerogels using water as the only solvent. Polym Chem 13:2375–2382. https://doi.org/10.1039/D1PY01573G

    Article  CAS  Google Scholar 

  36. Yang F, Zhao X, Xue T et al (2021) Superhydrophobic polyvinylidene fluoride/polyimide nanofiber composite aerogels for thermal insulation under extremely humid and hot environment. Sci China Mater 64:1267–1277. https://doi.org/10.1007/s40843-020-1518-4

    Article  CAS  Google Scholar 

  37. Xu T, Miszuk JM, Zhao Y et al (2015) Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv Healthc Mater 4:2238–2246. https://doi.org/10.1002/adhm.201500345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Beijing Key Laboratory of Advanced Functional Polymer Composites

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by DL, HL, ZW, ZZ and BZ. The first draft of the manuscript was written by DL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chengzhong Wang or Kai Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 737 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Liu, H., Wang, Z. et al. Ultralight and Superelastic Nanofiber Aerogels with In-Situ Loaded Polypyrrole for High-Efficient Cr(VI) Adsorption. J Polym Environ 31, 637–647 (2023). https://doi.org/10.1007/s10924-022-02602-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02602-2

Keywords

Navigation