Skip to main content
Log in

Synthesis and Characterization of Chitosan-Acrylic Acid Based Hydrogels and Investigation the Properties of Bilayered Design with Incorporated Alginate Beads

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The paper presents the synthesis of hydrogels via free-radical polymerization, based on Chitosan (CS) grafted with Acrylic acid (AA), using a two-step procedure. Free-radical polymerization has given strong hydrogels with compact structure, dominant elastic behavior, and long linear viscoelastic region. The results of rheological studies have shown that obtained hydrogels have significantly improved mechanical properties in comparison to chitosan hydrogels obtained by other sustainable methods. A step forward in the investigation of the potential application of chitosan hydrogels in wound dressing systems has been made by preparation of the bilayer design by embedding a layer of active compound-loaded alginate beads into the contact surface between two conjoined units of CS/AA hydrogels. Wild garlic (Allium ursinum L.) dried extract was used as an active compound because of its antimicrobial activity and green properties. This system has demonstrated pH-dependent release of extract and higher shear elastic modulus values than ordinary disc gels. A conducted study has given preliminary results for the possible application of bilayer chitosan-based hydrogels in wound dressing systems and represents the first step towards extrapolating the proposed design across other application fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kopecek J (2002) Polymer chemistry: swell gels. Nature 417:388–391. https://doi.org/10.1038/417388a.388

    Article  CAS  PubMed  Google Scholar 

  2. Enas MA (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  Google Scholar 

  3. Ullah MBH, Othman F, Javed Z, Ahmad HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433. https://doi.org/10.1016/j.msec.2015.07.053

    Article  CAS  Google Scholar 

  4. Okay O, Sariişik SB, Sibel DZ (1998) Swelling behavior of anionic acrylamide-based hydrogels in aqueous salt solutions: comparison of experiment with theory. J Appl Polym Sci 70:567–575. https://doi.org/10.1002/(SICI)1097-4628(19981017)70:3%3c567::AIDAPP19%3e3.0.CO;2-Y

    Article  CAS  Google Scholar 

  5. Erceg T, Dapčević-Hadnađev T, Hadnađev M, Ristić I (2021) Swelling kinetics and rheological behaviour of microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels. Colloid Polym Sci 299:11–23. https://doi.org/10.1007/s00396-020-04763-9

    Article  CAS  Google Scholar 

  6. Hamedi H, Moradi S, Hudson SM, Tonelli AE (2018) Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr Polym 199:445–460. https://doi.org/10.1016/j.carbpol.2018.06.114

    Article  CAS  PubMed  Google Scholar 

  7. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337. https://doi.org/10.1016/j.biotechadv.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  8. Souza RD, Zahedi P, Allen CJ, Miller MP (2009) Biocompatibility of injectable chitosan–phospholipid implant systems. Biomaterials 30:3818–3824. https://doi.org/10.1016/j.biomaterials.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  9. Paul W, Sharma CP (2004) Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs. 18:18–23

    Google Scholar 

  10. Milosavljević NB, Kljajević LM, Popović IG, Filipović JM, Kalagasidis Krušić MT (2010) Chitosan, itaconic acid and poly(vinyl alcohol) hybrid polymer networks of high degree of swelling and good mechanical strength. Polym Int 59:686–694. https://doi.org/10.1002/pi.2756

    Article  CAS  Google Scholar 

  11. Zhang Y, Guan Y, Zhou S (2005) Single component chitosan hydrogel microcapsule from a layer-by-layer approach. Biomacromol 6:2365–2369. https://doi.org/10.1021/bm050058b

    Article  CAS  Google Scholar 

  12. Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 2009:1–9. https://doi.org/10.1016/j.carbpol.2009.01.016

    Article  CAS  Google Scholar 

  13. Liu R, Xu X, Zhuang X, Cheng B (2014) Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydr Polym 101:1116–1121. https://doi.org/10.1016/j.carbpol.2013.10.056

    Article  CAS  PubMed  Google Scholar 

  14. Prabaharan M, Mano JF (2006) Chitosan derivatives bearing cyclodextrin cavitiesas novel adsorbent matrices. Carbohydr Polym 63:153–166. https://doi.org/10.1016/j.carbpol.2005.08.051

    Article  CAS  Google Scholar 

  15. Xie W, Xu PX, Lu Q (2001) Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett 11:1699–1701. https://doi.org/10.1016/s0960-894x(01)00285-2

    Article  CAS  PubMed  Google Scholar 

  16. Zhao L, Mitomo H (2008) Synthesis of pH-sensitive and biodegradable CM-cellulose/chitosan polyampholytic hydrogels with electron beam irradiation. J Bioact Compat Polym 23:319–333. https://doi.org/10.1177/0883911508092302

    Article  CAS  Google Scholar 

  17. Chen Y, Zhang Y, Wang F, Meng W, Yang X, Li P, Jiang J, Tan H, Zheng Y (2016) Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing. Mater Sci Eng C Mater Biol Appl 63:18–29. https://doi.org/10.1016/j.msec.2016.02.048

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Tan HM (2006) Crosslinked carboxymethylchitosan-g-poly(acrylic acid) copolymer as a novel superabsorbent polymer. Carbohydr Res 341:887–896. https://doi.org/10.1016/j.carres.2006.01.027

    Article  CAS  PubMed  Google Scholar 

  19. Cheng B, Pei B, Wang Z, Hu Q (2017) Advances in chitosan-based superabsorbent hydrogels. RSC Adv 7:42036–42046. https://doi.org/10.1039/C7RA07104C

    Article  CAS  Google Scholar 

  20. Draget KI, Taylor C (2011) Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll 25:251–256. https://doi.org/10.1016/j.foodhyd.2009.10.007

    Article  CAS  Google Scholar 

  21. Draget KI, Braek GS, Smidsrod O (1994) Alginic acid gels: the effect of alginate chemical composition and molecular weight. Carbohydr Polym 25:31–38. https://doi.org/10.1016/0144-8617(94)90159-7

    Article  CAS  Google Scholar 

  22. Tomšik A (2018) Drying and extraction of the wild garlic leaves (Allium ursinum L.) in order to obtain functional products with bioactive potential. Doctoral dissertation, University of Novi Sad, Novi Sad.

  23. Reed RW, Reed GB (1948) Drop plate method of counting viable bacteria. Can J Res 26:317–326. https://doi.org/10.1139/cjr48e-020

    Article  Google Scholar 

  24. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46. https://doi.org/10.1016/s0939-6411(00)00090-4

    Article  CAS  PubMed  Google Scholar 

  25. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Counterion binding in aqueous solutions of poly(vinylpyridines) as assessed by potentiometric titration. Prog Polym Sci 33:1088–1118. https://doi.org/10.1016/j.progpolymsci.2008.07.005

    Article  CAS  Google Scholar 

  26. Soleimani F, Sadeghi H, Shashavari H, Soleimani A, Sadeghi F (2013) Search result studies of swelling kinetics of carboxymethyl cellulose-g-PMAAm-co-PNIPAm superabsorbent hydrogels. Asian J Chem 25:4851–4855. https://doi.org/10.14233/ajchem.2013.14123

    Article  CAS  Google Scholar 

  27. Pedro DI, Nguyenn DT, Trachsel L, Rosa JG, Chu B, Eikenberry S, Sumerlin BS, Sawyer WG (2021) Superficial modulus, water-content, and mesh-size at hydrogel surfaces. Tribol Lett 69:160. https://doi.org/10.1007/s11249-021-01538-3

    Article  Google Scholar 

  28. Belović M, Mastilović J, Kevreša Ž (2014) Change of surface colour parameters during storage of paprika (Capsicum annuum L.). Food and Feed Res 41:85–92. https://doi.org/10.5937/FFR1402085B

    Article  Google Scholar 

  29. Halasa AF, Wathen GD, Hsu W, Matrana A, Massie JM (1991) Relationship between interchain spacing of amorphous polymers and blend miscibility as determined by wide-angle X-ray scattering. J Appl Polym Sci 43:183–190. https://doi.org/10.1002/app.1991.070430115

    Article  CAS  Google Scholar 

  30. Erceg T, Cakić S, Cvetinov M, Dapčević Hadnađev T, Budinski-Simendić J, Ristić I (2020) The properties of conventionally and microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels. Polym Bull 77:2089–2110. https://doi.org/10.1007/s00289-019-02840-w

    Article  CAS  Google Scholar 

  31. Varma R, Vasudevan S (2020) Extraction, characterization, and antimicrobial activity of chitosan from horse mussel Modiolus modiolus. ACS Omega 5:20224–20230. https://doi.org/10.1021/acsomega.0c01903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Acid-base properties of amides (2017) Departamento de Quimica Organica, Madrid. http://www.qorganica.es/qot/T11/acido_base_amidas_e_exported/. Accessed 04 April 2022

  33. Wyrzykowski D, Hebanowska E, Nowak-Wiczk G, Makowski M, Chmurzynski L (2011) Thermal behaviour of citric acid and isomeric aconitic acids. J Therm Anal Calorim 104:731–735. https://doi.org/10.1007/s10973-010-1015-2

    Article  CAS  Google Scholar 

  34. Cuomo F, Cofelice M, Lopez F (2019) Rheological characterization of hydrogels from alginate-based nanodispersion. Polymers 11:259. https://doi.org/10.3390/polym11020259

    Article  CAS  PubMed Central  Google Scholar 

  35. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:137. https://doi.org/10.1016/j.addr.2006.09.004

    Article  CAS  Google Scholar 

  36. Ali W, Gebert B, Altinpinar S, Mayer-Gall T, Ulbricht M, Gutmann JS, Graf K (2018) On the potential of using dual-function hydrogels for brackish water desalination. Polymers 10(6):567–588. https://doi.org/10.3390/polym10060567

    Article  CAS  PubMed Central  Google Scholar 

  37. Bae KH, Wang LS, Kurisawa M (2013) Injectable biodegradable hydrogels: progress and challenges. J Mater Chem B 1:5371–5388

    Article  CAS  Google Scholar 

  38. Bashir S, Teo YY, Ramesh S, Ramesh K, Rizwan M, Rizwan M (2019) Synthesis and characterization of hybrid poly (N, N-dimethylacrylamide) composite hydrogel electrolytes and their performance in supercapacitor. J Chil Chem Soc 332:135438. https://doi.org/10.1016/j.electacta.2019.135438

    Article  CAS  Google Scholar 

  39. Erceg T, Stupar A, Cvetinov M, Vasić V, Ristić I (2021) Investigation the correlation between chemical structure and swelling, thermal and flocculation properties of carboxymethylcellulose hydrogels. J Appl Polym Sci 138:50240. https://doi.org/10.1002/app.50365

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Ministry of Education, Science and Technological Development, Republic of Serbia, project number 451-03-68/2020-14/ 200134 for financial support.

Funding

This study was supported by Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja (8870) to Tamara Erceg

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Erceg.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 992 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erceg, T., Brakus, G., Stupar, A. et al. Synthesis and Characterization of Chitosan-Acrylic Acid Based Hydrogels and Investigation the Properties of Bilayered Design with Incorporated Alginate Beads. J Polym Environ 30, 3737–3760 (2022). https://doi.org/10.1007/s10924-022-02473-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02473-7

Keywords

Navigation