Skip to main content
Log in

Microextraction of Selected Endocrine Disrupting Phenolic Compounds using Magnetic Chitosan Biopolymer Graphene Oxide Nanocomposite

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Magnetic chitosan biopolymer, successfully grafted over graphene oxide (MCGO), employed for the efficient extraction of endocrine disrupting phenolic compounds (bisphenol A, 4-tertiary butylphenol and 4-tertiary octylphenol) in single analysis with high performance liquid chromatography. At optimum conditions the adsorption ability calculated for bisphenol A (BPA), 4-tertiary butylphenol (4-tertBP) and 4-tertiary octylphenol (4-tertOP) was 28.98 mgg−1, 33.22 mgg−1 and 24.31 mgg−1, respectively. The results found in the current study showed pseudo second order kinetic and Langmuir adsorption isotherm followed. Suitable extraction solvent was methanol and water in 1:1 ratio and the extraction recoveries calculated for BPA, 4-tertOP and 4-tertBP with relative standard deviations were 92.56% ± 3.10, 95.23% ± 4.02 and 95.81% ± 3.65, respectively. The method was also checked for green chemistry to calculate the eco scale environmental score. The promising adsorbent was also applied effectively to spiked wastewater samples including river water and industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Salgueiro-González N, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D (2017) Anal Chim Acta 962:1

    PubMed  Google Scholar 

  2. WFD (2000) Off J Europ Parliament L327 (22.12.2000) 1–82.

  3. European Commission. Directive 2008/105/EC of 16 December (2008) Off J Europ Union L348: 84.

  4. Ros O, Vallejo A, Blanco-Zubiaguirre L, Olivares M, Delgado A, Etxebarria N, Prieto A (2015) Talanta 134:247

    CAS  PubMed  Google Scholar 

  5. Ciofi L, Ancillotti C, Chiuminatto U, Fibbi D, Checchini L, Orlandini S, Del Bubba M (2014) J Chromatogr A 1362:75

    CAS  PubMed  Google Scholar 

  6. Ballesteros O, Zafra A, Navalón A, Vílchez JL (2006) J Chromatogr A 1121:154

    CAS  PubMed  Google Scholar 

  7. Azzouz A, Ballesteros E (2014) J Chromatogr A 1360:248

    CAS  PubMed  Google Scholar 

  8. Martínez-Moral MP, Tena MT (2011) J Sep Sci 34:2513

    PubMed  Google Scholar 

  9. Salgueiro-González N, Concha-Graña E, Turnes-Carou I, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D (2012) J Chromatogr A 1223:1

    PubMed  Google Scholar 

  10. Lin CY, Fuh MR, Da Huang S (2011) J Sep Sci 34:428

    CAS  PubMed  Google Scholar 

  11. Zgoła-Grześkowiak A (2010) J Chromatogr A 1217:1761

    PubMed  Google Scholar 

  12. Pernica M, Poloucká P, Seifertová M, Šimek Z (2015) J Chromatogr A 1417:49

    CAS  PubMed  Google Scholar 

  13. Shah J, Jan MR, Zeeshan M, Iqbal M (2016) Sep Sci Technol 51:1480

    CAS  Google Scholar 

  14. López-Darias J, Pino V, Meng Y, Anderson JL, Afonso AM (2010) J Chromatogr A 1217:7189

    PubMed  Google Scholar 

  15. Shah J, Jan MR (2018) Tasmia. Carbohydr Polym 199:461–472

    CAS  PubMed  Google Scholar 

  16. dos Reis CL, Vidal L, Canals A (2017) Anal Bioanal Chem 409:2665

    Google Scholar 

  17. Kumar A, Sharma G, Naushad M, Kumar A, Kalia S, Guo C, Mola GT (2017) J Photochem Photobiol A 337:118

    CAS  Google Scholar 

  18. Alqadami AA, Naushad M, Alothman ZA, Ghfar AA (2017) ACS Appl Mater Interface 9:36026

    CAS  Google Scholar 

  19. Khan M, Lo IMC (2017) J Hazard Mater 322:195

    CAS  PubMed  Google Scholar 

  20. Alqadami AA, Naushad M, Abdalla MA, Ahamad T, Abdullah Z, Othman AL, Alshehri SM, Ghfar AA (2017) J Clean Product 156:426

    Google Scholar 

  21. Guo J, Wang R, Tjiu WW, Pan J, Liu T (2012) J Hazard Mater 225–226:63

    PubMed  Google Scholar 

  22. Yao Y, Miao S, Yu S, Ping Ma L, Sun H, Wang S (2012) J Colloid Interface Sci 379:20

    CAS  PubMed  Google Scholar 

  23. Fan L, Luo C, Li X, Lu F, Qiu H, Sun M (2012) J Hazard Mater 215–216:272

    PubMed  Google Scholar 

  24. Travlou NA, Kyzas GZ, Lazaridis NK, Deliyanni EA (2013) Langmuir 29:1657

    CAS  PubMed  Google Scholar 

  25. Albadarin AB, Collins MN, Naushad M, Shirazian S, Walker G, Mangwandi C (2017) Chem Eng J 307:264

    CAS  Google Scholar 

  26. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Biosens Bioelectron 25:1070

    CAS  PubMed  Google Scholar 

  27. Ge H, Ma Z (2015) Carbohydr Polym 131:280

    CAS  PubMed  Google Scholar 

  28. de Toffoli AL, Maciel EVS, Fumes BH, Lanças FM (2018) J Sep Sci 41:288

    PubMed  Google Scholar 

  29. Depan D, Girase B, Shah JS, Misra RDK (2011) Acta Biomater 7:3432

    CAS  PubMed  Google Scholar 

  30. Zhang Y, Choi JR, Park SJ (2017) Compos A 101:227

    CAS  Google Scholar 

  31. Ahmadi M, Elmongy H, Madrakian T, Abdel-Rehim M (2017) Anal Chim Acta 958:1

    CAS  PubMed  Google Scholar 

  32. Tong J, Huang HX, Wu M (2016) Compos Sci Technol 129:183

    CAS  Google Scholar 

  33. Namiesnik J (2001) J Sep Sci 24:151

    CAS  Google Scholar 

  34. Tobiszewski M, Mechlińska A, Zygmunt B, Namieśnik J (2009) TrAC -Trends Anal Chem 28:943

    CAS  Google Scholar 

  35. Gałuszka A, Migaszewski Z, Namieśnik J (2013) TrAC - Trends Anal Chem 50:78

    Google Scholar 

  36. Adu IK, Sugiyama H, Fischer U, Hungerbühler K (2008) Proc Saf Environ Prot 86:77

    CAS  Google Scholar 

  37. Capello C, Fischer U, Hungerbühler K (2007) Green Chem 9:927

    CAS  Google Scholar 

  38. Constable DJC, Curzons AD, Cunningham VL (2002) Green Chem 4:521

    CAS  Google Scholar 

  39. Ribeiro MGTC, Machado AASC (2013) Green Chem Lett Rev 6:1

    CAS  Google Scholar 

  40. Tobiszewski M, Marć M, Gałuszka A, Namies̈nik J (2015) Molecules 20:10928

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Namies J, Tobiszewski M, Mechlin A (2010) Chem Soc Rev 39:2869

    Google Scholar 

  42. Armenta S, Garrigues S, de la Guardia M (2010) TrAC- Trends Anal Chem 71:2

    Google Scholar 

  43. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    CAS  Google Scholar 

  44. Shah J, Jan MR, Khan M, Amir S (2016) Desalin Water Treat 57:9736

    CAS  Google Scholar 

  45. Ding X, Wang Y, Wang Y, Pan Q, Chen J, Huang Y, Xu K (2015) Anal Chim Acta 861:36

    CAS  PubMed  Google Scholar 

  46. Shah J, Jan MR, Jamil S, Haq UA (2014) Toxicol Environ Chem 96:218

    CAS  Google Scholar 

  47. Abdulhameed AS, Mohammad AT, Jawad AH (2019) J Clean Product 232:43

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 840 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasmia, Shah, J. & Jan, M.R. Microextraction of Selected Endocrine Disrupting Phenolic Compounds using Magnetic Chitosan Biopolymer Graphene Oxide Nanocomposite. J Polym Environ 28, 1673–1683 (2020). https://doi.org/10.1007/s10924-020-01714-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01714-x

Keywords

Navigation