Skip to main content
Log in

Bio-based PA5.10 for Industrial Applications: Improvement of Barrier and Thermo-mechanical Properties with Rice Husk Ash and Nanoclay

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Composites consisting of renewable PA5.10 were obtained from melt compounding with a modified clay (CL) and/or a by-product obtained from the combustion of rice husk (RHA). Two different industrialized lab-scale machines were used to obtain the final shape: a film extrusion machine and an injection moulding apparatus. The industrial application requirements for polyamides generally need good barrier properties and high thermo-mechanical strength. Considering the barrier properties, the CL was able to decrease the oxygen permeability to less than half with respect to neat PA5.10. DMTA demonstrated that the addition of RHA caused a consistent enhancement (+ 46 °C) in the heat deflection temperature (HDT) compared to the neat PA5.10 matrix, increasing the possible areas of interest. Furthermore, the simultaneous presence of RHA and CL provided the best result reaching an extraordinary HDT of 131 °C. A complete discussion taking into account the morphology, crystallinity and filler-matrix adhesion evaluation was reported as well as comparison of performances with other bio-PAs composites. These two fillers can therefore be used separated or together combined in PA5.10 for functional purposes in a sustainable scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. European Bioplastic Association, Bioplastics Facts and Figures (2017). http://www.european-bioplastics.org/. Accessed 3 Dec 2018

  2. Pagacz J, Raftopoulos KN, Leszczyńska A, Pielichowski K (2016) J Therm Anal Calorim 123:1225. https://doi.org/10.1007/s10973-015-4929-x

    Article  CAS  Google Scholar 

  3. Ruehle DA, Perbix C, Castaneda M et al (2013) Polymer 54:6961. https://doi.org/10.1016/j.polymer.2013.10.013

    Article  CAS  Google Scholar 

  4. Al-Mulla A (2009) Int J Polym Anal Charact 14:540. https://doi.org/10.1080/10236660903086136

    Article  CAS  Google Scholar 

  5. Battegazzore D, Alongi J, Fontaine G, Frache A, Bourbigot S, Malucelli G (2015) RSC Adv 5:39424. https://doi.org/10.1039/C5RA04149J

    Article  CAS  Google Scholar 

  6. Battegazzore D, Salvetti O, Frache A, Peduto N, De Sio A, Marino F (2016) Compos A 81:193. https://doi.org/10.1016/j.compositesa.2015.11.022

    Article  CAS  Google Scholar 

  7. Feldmann M, Bledzki AK (2014) Compos Sci Technol 100:113. https://doi.org/10.1016/j.compscitech.2014.06.008

    Article  CAS  Google Scholar 

  8. Yan MQ, Yang HJ (2012) Polym Compos 33:1770. https://doi.org/10.1002/pc.22318

    Article  CAS  Google Scholar 

  9. Harmsen PFH, Hackmann MM, Bos HL (2014) Biofuels. Bioprod Biorefin 8:306. https://doi.org/10.1002/bbb.1468

    Article  CAS  Google Scholar 

  10. Wilbon PA, Chu F, Tang C (2013) Macromol Rapid Commun 34:8. https://doi.org/10.1002/marc.201200513

    Article  CAS  PubMed  Google Scholar 

  11. Winnacker M, Rieger B (2015) Chemsuschem 8:2455. https://doi.org/10.1002/cssc.201500421

    Article  CAS  PubMed  Google Scholar 

  12. Winnacker M, Rieger B (2016) Macromol Rapid Commun 37:1391. https://doi.org/10.1002/marc.201600181

    Article  CAS  PubMed  Google Scholar 

  13. Kim HT, Baritugo KA, Oh YH et al (2018) ACS Sustain Chem Eng 6:5296. https://doi.org/10.1021/acssuschemeng.8b00009

    Article  CAS  Google Scholar 

  14. Kuciel S, Kuzniar P, Liber-Knec A (2012) Polimery 57:627. https://doi.org/10.14314/polimery.2012.627

    Article  CAS  Google Scholar 

  15. Leszczyńska A, Stafin K, Pagacz J et al (2018) Ind Crops Prod 116:97. https://doi.org/10.1016/j.indcrop.2018.02.022

    Article  CAS  Google Scholar 

  16. Kind S, Wittmann C (2011) Appl Microbiol Biotechnol 91:1287. https://doi.org/10.1007/s00253-011-3457-2

    Article  CAS  PubMed  Google Scholar 

  17. Hasan MM, Zhou Y, Mahfuz H, Jeelani S (2006) Mater Sci Eng 429:181. https://doi.org/10.1016/j.msea.2006.05.124

    Article  CAS  Google Scholar 

  18. Liu ZJ, Zhou PL, Yan DY (2004) J Appl Polym Sci 91:1834. https://doi.org/10.1002/app.13336

    Article  CAS  Google Scholar 

  19. Picard E, Vermogen A, Gerard JF, Espuche E (2007) J Membr Sci 292:133. https://doi.org/10.1016/j.memsci.2007.01.030

    Article  CAS  Google Scholar 

  20. Sadeghi F, Fereydoon M, Ajji A (2013) Adv Polym Technol 32:E53. https://doi.org/10.1002/adv.20270

    Article  CAS  Google Scholar 

  21. Zierdt P, Weber A (2015) Processing and characterization of wood plastic composites from bio-based polyamide 11 and chemically modified beech fibers. Mater Sci Forum 825:1039–1046

    Article  Google Scholar 

  22. Battegazzore D, Frache A, Abt T, Maspoch ML (2017) Essential Work of Fracture of Bio-Polyamides and Clay Composites. In: Fractura SdGEd (ed) XXXIV ENCUENTRO DEL GRUPO ESPAÑOL DE FRACTURA. Secretaría del Grupo Español de Fractura, Santander, pp 349–354

    Google Scholar 

  23. Battegazzore D, Sattin A, Maspoch ML, Frache A (2019) Polym Compos 40:2617. https://doi.org/10.1002/pc.25056

    Article  CAS  Google Scholar 

  24. Turmanova S, Genieva S, Vlaev L (2012) Int J Chem. https://doi.org/10.5539/ijc.v4n4p62

    Article  Google Scholar 

  25. Chaudhary DS, Jollands MC, Cser F (2004) Adv Polym Technol 23:147. https://doi.org/10.1002/adv.20000

    Article  CAS  Google Scholar 

  26. Ayswarya EP (2012) KF Vidya Francis, VS Renju, ET Thachil. Mater Des. https://doi.org/10.1016/j.matdes.2012.04.035

    Article  Google Scholar 

  27. Arayapranee W, Na-Ranong N, Rempel GL (2005) J Appl Polym Sci 98:34. https://doi.org/10.1002/app.21004

    Article  CAS  Google Scholar 

  28. Siriwardena S, Ismail H, Ishiaku US (2003) J Reinf Plast Compos 22:1645. https://doi.org/10.1177/073168403027619

    Article  CAS  Google Scholar 

  29. Fuad MYA, Ismail Z, Mansor MS, Ishak ZAM, Omar AKM (1995) Polym J 27:1002. https://doi.org/10.1295/polymj.27.1002

    Article  CAS  Google Scholar 

  30. Takemori MT (1979) Polym Eng Sci 19:1104. https://doi.org/10.1002/pen.760191507

    Article  CAS  Google Scholar 

  31. Khanna Y, Kuhn W (1997) J Polym Sci B 35:2219. https://doi.org/10.1002/(SICI)1099-0488(199710)35:14<2219::AID-POLB3>3.0.CO;2-R

    Article  CAS  Google Scholar 

  32. Ciaperoni A, Mula A (2001) Pacini Editore. Chimica e tecnologia delle poliammidi, Pisa, p 154

    Google Scholar 

  33. Pukanszky B (1990) Composites 21:255. https://doi.org/10.1016/0010-4361(90)90240-W

    Article  CAS  Google Scholar 

  34. Battegazzore D, Noori A, Frache A (2018) J Compos Mater 53(6):783–797. https://doi.org/10.1177/0021998318791316

    Article  CAS  Google Scholar 

  35. Százdi L, Pozsgay A, Pukánszky B (2007) Eur Polym J 43:345. https://doi.org/10.1016/j.eurpolymj.2006.11.005

    Article  CAS  Google Scholar 

  36. Atkinson J (1993) In: Corish Patrick J (ed) Concise encylopedia of polymer processing & applications. Pergamon Press, Oxford

    Chapter  Google Scholar 

  37. Oliver-Ortega H, Julian F, Espinach FX, Tarrés Q, Ardanuy M, Mutjé P (2019) J Cleaner Prod 226:64. https://doi.org/10.1016/j.jclepro.2019.04.047

    Article  CAS  Google Scholar 

  38. Oliver-Ortega H, Granda LA, Espinach FX, Mendez JA, Julian F, Mutjé P (2016) Compos Sci Technol 132:123. https://doi.org/10.1016/j.compscitech.2016.07.004

    Article  CAS  Google Scholar 

  39. Nikiforov AA, Vol’fson SI, Okhotina NA, Rinberg R, Hartmann T, Kroll L (2017) Russ Metall. https://doi.org/10.1134/s0036029517040152

    Article  Google Scholar 

  40. Armioun S, Panthapulakkal S, Scheel J, Tjong J, Sain M (2016) J Appl Polym Sci. https://doi.org/10.1002/app.43595

    Article  Google Scholar 

  41. Battegazzore D, Bocchini S, Alongi J, Frache A (2014) RSC Adv 4:54703.  https://doi.org/10.1039/C4RA05991C

    Article  CAS  Google Scholar 

  42. Gupta A, Simmons W, Schueneman GT, Hylton D, Mintz EA (2017) ACS Sustain Chem Eng 5:1711. https://doi.org/10.1021/acssuschemeng.6b02458

    Article  CAS  Google Scholar 

  43. Della VP, Kühn I, Hotza D (2002) Mater Lett 57:818. https://doi.org/10.1016/S0167-577X(02)00879-0

    Article  CAS  Google Scholar 

  44. Villaseñor P, Franco L, Subirana J, Puiggali J (1999) J Polym Sci B 37:2383. https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2383::AID-POLB9>3.0.CO;2-G

    Article  Google Scholar 

  45. Seguela R (2005) J Macromol Sci C 45:263. https://doi.org/10.1081/MC-200067727

    Article  CAS  Google Scholar 

  46. Móczó J, Pukánszky B (2008) J Ind Eng Chem 14:535. https://doi.org/10.1016/j.jiec.2008.06.011

    Article  CAS  Google Scholar 

  47. Hári J, Horváth F, Renner K, Móczó J, Pukánszky B (2018) Polym Test 72:178. https://doi.org/10.1016/j.polymertesting.2018.10.011

    Article  CAS  Google Scholar 

  48. Shelley J, Mather P, DeVries K (2001) Polymer 42:5849. https://doi.org/10.1016/S0032-3861(00)00900-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Alberto Cisternino for the compounding of the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Battegazzore.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battegazzore, D., Frache, A. Bio-based PA5.10 for Industrial Applications: Improvement of Barrier and Thermo-mechanical Properties with Rice Husk Ash and Nanoclay. J Polym Environ 27, 2213–2223 (2019). https://doi.org/10.1007/s10924-019-01504-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01504-0

Keywords

Navigation