Skip to main content
Log in

Improved Chemical Reactivity of Lignocellulose from High Solids Content Micro-fibrillation by Twin-screw Extrusion

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The low reactivity of lignocellulose limits the effective chemical conversion of lignocellulose biomass into functional bioproducts. Mechanical micro-fibrillation treatment can improve the chemical accessibility of lignocellulose but usually has limited productivity by the low processing solids content. The presented work demonstrates effective micro-fibrillation of lignocellulose at high solids content up to 60 wt% can be achieved by twin-screw extrusion. Morphological characterizations of the extruded wood pulp lignocellulose show the degree of micro-fibrillation is enhanced by operating at higher solids content. The lignocellulose treated at 60 wt% solids content presents 2.1 and 4.8 times higher water retention capacity and specific surface area, respectively, than the original material. Acetylation results show the twin-screw extrusion pre-treatment can significantly accelerate the chemical modification of lignocellulose by 50%. This high productivity method for micro-fibrillating lignocellulose should be of great interest to the bioplastics industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559

    Article  CAS  Google Scholar 

  2. Brodin M, Vallejos M, Opedal MT et al (2017) Lignocellulosics as sustainable resources for production of bioplastics—a review. J Clean Prod 162:646–664

    Article  CAS  Google Scholar 

  3. Ten E, Vermerris W (2013) Functionalized polymers from lignocellulosic biomass: state of the art. Polymers (Basel) 5:600–642

    Article  CAS  Google Scholar 

  4. Chen J, Tang C, Yue Y et al (2017) Highly translucent all wood plastics via heterogeneous esterification in ionic liquid/dimethyl sulfoxide. Ind Crops Prod 108:286–294

    Article  CAS  Google Scholar 

  5. Chen MJ, Li RM, Zhang XQ et al (2017) Homogeneous transesterification of sugar cane bagasse toward sustainable plastics. ACS Sustain Chem Eng 5:360–366

    Article  CAS  Google Scholar 

  6. Zhen L, Zhang G, Huang K et al (2016) Modification of rice straw for good thermoplasticity via graft copolymerization of ε—caprolactone onto acetylated rice straw using ultrasonic-microwave coassisted technology. ACS Sustain Chem Eng 4:957–964

    Article  CAS  Google Scholar 

  7. Bao L, Zou X, Chi S et al (2018) Advanced sustainable thermoplastics based on wood residue using interface nanomodification technique. Adv Sustain Syst 1800050:1–12

    Google Scholar 

  8. Tian SQ, Zhao RY, Chen ZC (2018) Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew Sustain Energy Rev 91:483–489

    Article  CAS  Google Scholar 

  9. Lee SH, Teramoto Y, Endo T (2010) Enhancement of enzymatic accessibility by fibrillation of woody biomass using batch-type kneader with twin-screw elements. Bioresour Technol 101:769–774

    Article  CAS  PubMed  Google Scholar 

  10. Hoeger IC, Nair SS, Ragauskas AJ et al (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20:807–818

    Article  CAS  Google Scholar 

  11. Duque A, Manzanares P, Ballesteros M (2017) Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications. Renew Energy 114:1427–1441

    Article  CAS  Google Scholar 

  12. Lee SH, Teramoto Y, Endo T (2009) Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process I—effect of additives with cellulose affinity. Bioresour Technol 100:275–279

    Article  CAS  PubMed  Google Scholar 

  13. Leu S-Y, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Res 6:405–415

    Article  CAS  Google Scholar 

  14. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zheng J, Rehmann L (2014) Extrusion pretreatment of lignocellulosic biomass: a review. Int J Mol Sci 15:18967–18984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kratky L, Jirout T (2011) Biomass size reduction machines for enhancing biogas production. Chem Eng Technol 34:391–399

    Article  CAS  Google Scholar 

  17. Chen X, Kuhn E, Wang W et al (2013) Comparison of different mechanical refining technologies on the enzymatic digestibility of low severity acid pretreated corn stover. Bioresour Technol 147:401–408

    Article  CAS  PubMed  Google Scholar 

  18. Baati R, Magnin A, Boufi S (2017) High solid content production of nanofibrillar cellulose via continuous extrusion. ACS Sustain Chem Eng 5:2350–2359

    Article  CAS  Google Scholar 

  19. Rol F, Karakashov B, Nechyporchuk O et al (2017) Pilot-scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain Chem Eng 5:6524–6531

    Article  CAS  Google Scholar 

  20. Ho TTT, Abe K, Zimmermann T, Yano H (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22:421–433

    Article  CAS  Google Scholar 

  21. Choi CH, Kim JS, Oh KK (2013) Evaluation the efficacy of extrusion pretreatment via enzymatic digestibility and simultaneous saccharification &fermentation with rapeseed straw. Biomass Bioenerg 54:211–218

    Article  CAS  Google Scholar 

  22. Choi CH, Oh KK (2012) Application of a continuous twin screw-driven process for dilute acid pretreatment of rape straw. Bioresour Technol 110:349–354

    Article  CAS  PubMed  Google Scholar 

  23. Um BH, Choi CH, Oh KK (2013) Chemicals effect on the enzymatic digestibility of rape straw over the thermo-mechanical pretreatment using a continuous twin screw-driven reactor (CTSR). Bioresour Technol 130:38–44

    Article  CAS  PubMed  Google Scholar 

  24. da Silva AS, Teixeira RSS, Endo T et al (2013) Continuous pretreatment of sugarcane bagasse at high loading in an ionic liquid using a twin-screw extruder. Green Chem 15:1991–2001

    Article  CAS  Google Scholar 

  25. Vandenbossche V, Brault J, Hernandez-Melendez O et al (2016) Suitability assessment of a continuous process combining thermo-mechano-chemical and bio-catalytic action in a single pilot-scale twin-screw extruder for six different biomass sources. Bioresour Technol 211:146–153

    Article  CAS  PubMed  Google Scholar 

  26. Liu W, Wang B, Hou Q et al (2016) Effects of fibrillation on the wood fibers’ enzymatic hydrolysis enhanced by mechanical refining. Bioresour Technol 206:99–103

    Article  CAS  PubMed  Google Scholar 

  27. Zhang L, Lu H, Yu J et al (2017) Dissolution of lignocelluloses with high lignin content in a NMMO/H2O solvent system via a simple glycerol swelling and mechanical pretreatment. J Agric Food Chem 65:9587–9594

    Article  CAS  PubMed  Google Scholar 

  28. Cha YL, Yang J, Seo S, Il et al (2016) Alkaline twin-screw extrusion pretreatment of Miscanthus with recycled black liquor at the pilot scale. Fuel 164:322–328

    Article  CAS  Google Scholar 

  29. Kim TH, Choi CH, Oh KK (2013) Bioconversion of sawdust into ethanol using dilute sulfuric acid-assisted continuous twin screw-driven reactor pretreatment and fed-batch simultaneous saccharification and fermentation. Bioresour Technol 130:306–313

    Article  CAS  PubMed  Google Scholar 

  30. Liu C, Van Der Heide E, Wang H et al (2013) Alkaline twin-screw extrusion pretreatment for fermentable sugar production. Biotechnol Biofuels 6:1–11

    Article  CAS  Google Scholar 

  31. Senturk-Ozer S, Gevgilili H, Kalyon DM (2011) Biomass pretreatment strategies via control of rheological behavior of biomass suspensions and reactive twin screw extrusion processing. Bioresour Technol 102:9068–9075

    Article  CAS  PubMed  Google Scholar 

  32. Velásquez-Cock J, Gañán P, Gómez HC et al (2018) Improved redispersibility of cellulose nanofibrils in water using maltodextrin as a green, easily removable and non-toxic additive. Food Hydrocoll 79:30–39

    Article  CAS  Google Scholar 

  33. Spence KL, Venditti RA, Rojas OJ et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  CAS  Google Scholar 

  34. Samiey B, Dargahi MR (2010) Kinetics and thermodynamics of adsorption of congo red on cellulose. Cent Eur J Chem 8:906–912

    CAS  Google Scholar 

  35. Qin Y, Qiu X, Zhu JY (2016) Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with diluted acid prehydrolysis. Sci Rep 6:35602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gu F, Wang W, Cai Z et al (2018) Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales. Cellulose 25:2861–2871

    Article  CAS  Google Scholar 

  37. Kekäläinen K, Liimatainen H, Illikainen M et al (2014) The role of hornification in the disintegration behaviour of TEMPO-oxidized bleached hardwood fibres in a high-shear homogenizer. Cellulose 21:1163–1174

    Article  CAS  Google Scholar 

  38. Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Clean Manufacturing and Nano-engineering of Sustainable Materials, Ontario Research Fund (ORF) led by Dr. Sain at the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Thompson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Thompson, M. & Lawton, D.J.W. Improved Chemical Reactivity of Lignocellulose from High Solids Content Micro-fibrillation by Twin-screw Extrusion. J Polym Environ 27, 643–651 (2019). https://doi.org/10.1007/s10924-019-01377-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01377-3

Keywords

Navigation