Skip to main content
Log in

Wood Polypropylene (PP) Composites Manufactured by Mango Wood Waste with Virgin or Recycled PP: Mechanical, Morphology, Melt Flow Index and Crystalline Behaviour

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Compositions of wood-polypropylene composites (WPCs) are prepared through melt compounding followed by injection moulding. WPCs are formulated for eight compositions with a different weight ratio of wood, virgin or recycled polypropylene and coupling agent. WPCs compositions are compared in terms of Melt Flow Index, Tensile, FESEM images, Flexural and crystallinity index for same operating variable conditions. From the results, recycled polypropylene based WPCs are superior in comparison to virgin polypropylene based WPCs. With the addition of 5 % coupling agent in recycled polypropylene-based composites for 45:50 composition, tensile and flexural values of WPCs are higher in comparison to all composition and neat virgin or recycled polypropylene. This work stands for the utilization of waste wood with recycled plastic for replacement of wood and virgin plastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kengkhetkit N, Amornsakchai T (2014) A new approach to ‘‘Greening’’ plastic composites using mango apple leaf waste for performance and cost effectiveness. Mater Des 55(2014):292–299

    Article  CAS  Google Scholar 

  2. Migneaulta S, Koubaab A, Perrec P, Riedl B (2015) Effects of wood fiber surface chemistry on strength of wood–plastic composites. Appl Surf Sci 343(2015):11–18

    Article  Google Scholar 

  3. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33

    Article  Google Scholar 

  4. Tran LQN, Fuentes CA, Dupont Gillain C, Van Vuure AW, Verpoest I (2013) Understanding the interfacial compatibility and adhesion of natural coir fibre thermoplastic composites. Compos Sci Technol 81:23–30

    Article  Google Scholar 

  5. Gozdecki C, Wilczynski A, Kociszewski M, Zajchowski S (2015) Properties of wood–plastic composites made of milled particleboard and polypropylene. Eur J Wood Prod 73:87–95

    Article  CAS  Google Scholar 

  6. Pelaez-Samaniego MR, Yadama V, Lowell E, Amidon TE, Chaffee TL (2013) 2013) Hot water extracted wood fiber for production of wood plastic composites (WPCs. Holzforschung 67(2):193–200

    Article  CAS  Google Scholar 

  7. Migneault S, Koubaa A, Perre P (2014) Effect of fiber origin, proportion, and chemical composition on the mechanical and physical properties of wood-plastic composites. J Wood Chem Technol 34(2014):241–261

    Article  CAS  Google Scholar 

  8. Li Yali (2012) Effect of coupling agent concentration Fiber content, and Size on mechanical properties of Wood/HDPE Composites. Int J Polym Mater Polym Biomater 61(11):882–890

    Article  CAS  Google Scholar 

  9. Binhussain MA, El-Tonsy MM (2013) Palm leave and plastic waste wood composite for out-door structures. Constr Build Mater 47(2013):1431–1435

    Article  Google Scholar 

  10. Winandy J.E., Stark N.M., Clemons C.M. (2004) 5th Global Wood and Natural fiber Composites Symposium. In: Kassel (Germany); April 27–28, 2004

  11. Kuo P-Y, Wang S-Y, Chen J-H, Hsueh H-C, Tsai M-J (2009) Effects of material compositions on the mechanical properties of wood–plastic composites manufactured by injection molding. Mater Des 30(9):3489–3496

    Article  CAS  Google Scholar 

  12. Nourbakhsh A, Ashori A (2010) Wood plastic composites from agro-waste materials: analysis of mechanical properties. Bioresour Technol 101:2525–2528

    Article  CAS  Google Scholar 

  13. Yeh S-K, Gupta RK (2008) Improved wood–plastic composites through better Processing. Compos Part A 39:1694–1699

    Article  Google Scholar 

  14. Pelaez-Samaniego MR, Yadama V, Lowell E, Espinoza-Herrera R (2013) A review of wood thermal pretreatments to improve wood composite properties. Wood Sci Technol 47:1285–1319

    Article  CAS  Google Scholar 

  15. ASTM International (ASTM D 1238-04c) (2008) Standard test method for melt flow rates of thermoplastics by extrusion plastometer. In: Annual book of ASTM standards international, vol 08, no 01. West Conshohocken, p 277e90

  16. ASTM International (ASTM D 638-02a) (2003) Standard test method for tensile properties of plastics. In: Annual book of ASTM standards, vol 08, no 01. West Conshohocken, PA, p 46e59

  17. ASTM International (ASTM D 790-2007) (2008) Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. In: Annual book of ASTM standards, vol 08, no 01. West Conshohocken, PA, p 151e61

  18. Ruland W (1961) X-ray determination of crystallinity and diffuse disorder scattering. Acta Cryst 14:1180–1185

    Article  CAS  Google Scholar 

  19. Park S, Baker JO, Himme ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  Google Scholar 

  20. Kazayawoko M, Balatinecz JJ, Matuana LM (1999) surface modification and adhesion mechanisms in woodfiber-polypropylene composites. J Mater Sci 34(1999):6189–6199

    Article  CAS  Google Scholar 

  21. Leu S-Y, Yang T-H, Lo S-F, Yang T-H (2012) Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites (WPCs). Constr Build Mater 29(2012):120–127

    Article  Google Scholar 

  22. Bledzki AK, Faruk O (2003) Wood fibre reinforced polypropylene composites: effect of fibre geometry and coupling agent on physico-mechanical properties. Appl Compos Mater 10:365–379

    Article  CAS  Google Scholar 

  23. Chen HC, Chen TY, Hsu CH (2006) Effects of wood particle size and mixing ratios of HDPE on the properties of the composites. Holz als Roh-und Werkst 64:172–177

    Article  CAS  Google Scholar 

  24. Ndiaye D, Matuana LM, Morlat-Therias S, Vidal L, Tidjani A, Gardette JL (2011) Thermal and mechanical properties of polypropylene/Wood-flour composites. J Appl Polym Sci 119:3321–3328

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr.S.B.Yadaw, Scientist “G”, DMSRDE Kanpur, is providing a valuable guidance and resources for this research work. Defence Material & Stores Research& Development Establishment (DMSRDE) Kanpur and MNNIT Allahabad are utilised for the experimentations for grant no. 2349/med/f – pf/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsul Haq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, S., Srivastava, R. Wood Polypropylene (PP) Composites Manufactured by Mango Wood Waste with Virgin or Recycled PP: Mechanical, Morphology, Melt Flow Index and Crystalline Behaviour. J Polym Environ 25, 640–648 (2017). https://doi.org/10.1007/s10924-016-0845-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0845-9

Keywords

Navigation