Skip to main content

Advertisement

Log in

Investigation of Biosurfactant Activity and Asphaltene Biodegradation by Bacillus cereus

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this research, a biosurfactant-producing bacterium with capability of asphaltene degradation was isolated from oil-contaminated soil samples, and identified as Bacillus cereus. This strain produced an effective biosurfactant in the presence of molasses and the surface tension was reduced to the level of 36.4 mN/m after 48 h under optimum conditions. The optimum values of carbon-to-nitrogen ratio (C:N), pH, and temperature for biosurfactant production were determined as 30:1, 7.3 and 29 °C, respectively, using response surface methodology. The maximum emulsification activity in the culture broth was 53 % after 48 h using kerosene at 25 °C. The goodness of fit of four growth kinetic models including Tessier, Contois, Logistic and Westerhoff was compared for the bacterial growth and molasses utilization of B. cereus in 5-L batch bioreactor during 120 h. Conducted kinetic study showed that biosurfactant production had a good fit with the Contois growth kinetic model (R2 = 0.962) and the maximum specific growth rate (µ max ), saturation constant (K s ) and the yield of biomass per substrate (Y x/s ) were determined to be 0.145 h−1, 1.83 g/L and 0.428 g/g, respectively. The asphaltene biodegradation in flask was evaluated by FTIR analysis and quantified by a spectrophotometer. This bacterium was able to degrade up to 40 % of asphaltene as a sole carbon and energy source after 60 days at 28 °C. The resulting surface tension of 30.2 mN/m with the critical micelle concentration of 23.4 mg/L indicated good efficiency of the biosurfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gray R, Tykwinski RR, Stryker JM, Tan X (2011) Energy Fuel 25:3125–3134

    Article  CAS  Google Scholar 

  2. Dechaine GP (2010) Solubility and diffusion of vanadium compounds and asphaltene aggregates. University of Alberta, Edmonton

    Google Scholar 

  3. Strausz OP, Torres M, Lown EM, Safarik I, Murgich J (2006) Energy Fuels 20:2013–2021

    Article  CAS  Google Scholar 

  4. Mostowfi F, Indo K, Mullins OC, McFarlane R (2009) Energy Fuel 23:1194–1200

    Article  CAS  Google Scholar 

  5. Wu J, Prausnitz MJ, Firoozabadi A (2000) AIChE J 46:197–206

    Article  CAS  Google Scholar 

  6. Hong E, Watkinson PA (2004) Fuel 83:1881–1887

    Article  Google Scholar 

  7. Jahromi H, Fazaelipoor MH, Ayatollahi S, Niazi A (2014) Fuel 117:230–235

    Article  CAS  Google Scholar 

  8. Pineda Flores G, Boll-Arguello G, Mestahoward A (2004) J Biodegr 15:145–151

    Article  CAS  Google Scholar 

  9. Ogbo EM, Okhuoya JA (2008) Afr J Biotechnol 7:4291–4297

    CAS  Google Scholar 

  10. Salehizadeh H, Mohammadizad S (2009) Iran J Biotechnol 7:216–223

    CAS  Google Scholar 

  11. Sen R (2008) Prog Energy Combust Sci 34:714–724

    Article  CAS  Google Scholar 

  12. Geys R, Soetaert W, Van Bogaert I (2014) Curr Opin Biotechnol 30:66–72

    Article  CAS  Google Scholar 

  13. Jackson SA, Borchert E, O’Gara F, Dobson ADW (2015) Curr Opin Biotechnol 33:176–182

    Article  CAS  Google Scholar 

  14. Gautam KK, Tyagi VK (2006) J Oleo Sci 55:155–166

    Article  CAS  Google Scholar 

  15. Lawniczak L, Marecik R, Chrzanowski L (2013) Appl Microbiol Biotechnol 97:2327–2339

    Article  CAS  Google Scholar 

  16. Pastewski S, Hallmann E, Medrzycka K (2006) Eng Sci 23:579–588

    CAS  Google Scholar 

  17. Marchant R, Banat IM (2012) Trends Biotechnol 30:558–565

    Article  CAS  Google Scholar 

  18. Shete AM, Wadhawa G, Banat IM, Chopade BA (2006) J Sci Ind Res India 65:91–115

    Google Scholar 

  19. Batista SB, Mounteer AH, Amorim FR, Tótola MR (2006) Bioresour Technol 97:868–875

    Article  CAS  Google Scholar 

  20. Viramontes-Ramos S, Portillo-Ruiz MC, Ballinas-Casarrubias ML, Torres-Muñoz JV, Rivera-Chavira BE, Nevárez-Moorillón JV (2010) Braz J Microbiol 41:668–675

    Article  CAS  Google Scholar 

  21. Saharan BS, Sahu RK, Sharma D (2011) Gen Eng Biotechnol J 29:1–14

    Google Scholar 

  22. Chen J, Huang RT, Zhang KY, Ding FR (2012) Appl Microbiol 112:660–671

    Article  CAS  Google Scholar 

  23. Pereira JFB, Gudia EJ, Costa R, Vitorino R, Teixeira JA, Coutinho JAP, Rodrigues LR (2013) Fuel 111:259–268

    Article  CAS  Google Scholar 

  24. Mutalik SR, Vaidya BK, Joshi RM, Desai KM, Nene SN (2008) Bioresour Technol 99:7875–7880

    Article  CAS  Google Scholar 

  25. Rodrigues R, Teixeira JA, Oliveira R, van der Mei HC (2006) Process Biochem 41:1–10

    Article  CAS  Google Scholar 

  26. Rashedi H, Assadi MM, Jamshidi E, Bonakdarpour B (2006) Int J Environ Sci Technol 3:297–303

    Article  CAS  Google Scholar 

  27. Najafi AR, Rahimpour MR, Jahanmiri AH, Roostaazad R, Arabian DD, Soleimani M, Jamshidnejad Z (2011) Colloids Surf B 82:33–39

    Article  CAS  Google Scholar 

  28. Tavasoli TT, Mousavi M, Shojaosadati A, Salehizadeh H (2012) Fuel 93:142–148

    Article  Google Scholar 

  29. Velázquez-Aradillas JC, Toribio-Jiménez J, González-Chávez MD, Bautista F, Cebrián ME, Esparza-Garcia FJ, Rodríguez-Vázquez R (2011) J Microbiol Biotechnol 27:907–913

    Article  Google Scholar 

  30. Hsueh YH, Didier EB, Lereclus E, Ghelardi A, Lee Wong C (2007) Appl Environ Microbiol 73:7225–7231

    Article  CAS  Google Scholar 

  31. Sneath PHA, Mair NS, Sharpe ME, Holt JG (1986) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore

    Google Scholar 

  32. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) J Bacterial 173:697–703

    CAS  Google Scholar 

  33. DeSantis TZ, Dubosarskiy I, Murray SR, Andersen GL (2003) Bioinformatics 19:1461–1468

    Article  CAS  Google Scholar 

  34. Ghojavand H, Vahabzadeh F, Mehranian M, Radmehr M, Shahraki KH, Zolfagharian F, Emadi MA, Roayaei E (2008) Appl Microbiol Biotechnol 80:1073–1085

    Article  CAS  Google Scholar 

  35. Pornsunthorntawee O, Arttaweeporn N, Paisanjit S, Somboonthanate P, Abe M, Rujiravanit R, Chavadej S (2008) Biochem Eng J 42:172–179

    Article  CAS  Google Scholar 

  36. Cooper DG, Goldenberg BG (1987) Appl Environmen Microbiol 53:224–229

    CAS  Google Scholar 

  37. Desai J, Banat IM (1997) Microbiol Mol Biol Rev 61:47–58

    CAS  Google Scholar 

  38. Abbasi H, Hamedi MM, Bagheri Lotfabad T, Shahbani Zahiri H, Sharafi H, Masoomi F, Moosavi-Movahedi AA, Ortiz A, Amanlou M, Akbari Noghabi K (2012) Biosci Bioeng 113:211–219

    Article  CAS  Google Scholar 

  39. Rodrigues L, Moldes A, Teixeira J, Oliveira R (2006) Biochem Eng J 28:109–116

    Article  CAS  Google Scholar 

  40. Dubois M, Gilles KA, Hamilton JK, Smith F, Rebers PA (1956) Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  41. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Biol Chem 193:265–275

    CAS  Google Scholar 

  42. Folch J, Lees M, Stanley GH (1957) Biol Chem 226:497–509

    CAS  Google Scholar 

  43. Rittman RE, McCarty PL (2001) Environmental biotechnology: principles and applications. Mc-Graw Hill, New York

    Google Scholar 

  44. Simkins S, Alexander M (1984) Appl Environ Microbiol 47:1299–1306

    CAS  Google Scholar 

  45. Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Bioresour Technol 99:195–199

    Article  CAS  Google Scholar 

  46. Henzler HJ, Schedel M (1991) Bioproc Eng 7:123–131

    Article  CAS  Google Scholar 

  47. Lin SC, Sharma MM, Georgiou G (1993) Biotechnol Prog 9:138–145

    Article  CAS  Google Scholar 

  48. Rosen M (1989) Surfactants and interfacial phenomena. Wiley Interscience, New York

    Google Scholar 

  49. Adamczak M, Bednarski W (2000) Biotechnol Lett 22:313–316

    Article  CAS  Google Scholar 

  50. Siegmund I, Wagner F (1991) Biotechnol Technol 5:265–268

    Article  CAS  Google Scholar 

  51. Babu BV, Chakole PG, Seyed Mubeen JH (2005) Chem Eng Sci 60:4822–4837

    Article  CAS  Google Scholar 

  52. Babu BV, Angira R (2006) Comp. Chem. Eng. 30:989–1002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the NSERC Discovery grant. We are also thankful to Dr. Mohammad Ali Asdollahi for his assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Salehizadeh or Ning Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadollahi, L., Salehizadeh, H. & Yan, N. Investigation of Biosurfactant Activity and Asphaltene Biodegradation by Bacillus cereus . J Polym Environ 24, 119–128 (2016). https://doi.org/10.1007/s10924-016-0754-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0754-y

Keywords

Navigation