Skip to main content
Log in

Study on the Thermo-Mechanical and Biodegradable Properties of Shellac Films Grafted with Acrylic Monomers by Gamma Radiation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Shellac (SL) films were prepared by casting and were grafted with various acrylic monomers of different functionalities using gamma radiation. Different formulations of shellac with varying concentrations (3, 5 and 7%) of these acrylic monomers such as 2-hydroxyethyl methacrylate (HEMA), 2-ethylhexyl acrylate (EHA) and 1,4-butanediol diacrylate (BDDA) in methanol were prepared. The pure shellac and other treated films were then irradiated under gamma radiation (Co-60) at different doses (0.5–5 kGy) at a dose rate of 3.5 kGy/h where 1 Gy = 1 J/kg = 100 rads. The mechanical properties like tensile strength (TS) and elongation at break (Eb) of the prepared films were studied. The mechanical properties of the irradiated shellac films demonstrated superior values. Among the formulations, shellac grafted with BDDA (SL-g-BDDA) showed the highest TS and Eb values which were 543 and 168% higher than those of raw shellac films, respectively. The water uptake behavior of raw and treated films was also studied. The raw film showed 11% water uptake but HEMA containing film showed 67%. In the soil burial test, HEMA containing shellac film was rapidly degraded than other raw, EHA and BDDA grafted films. Thermal properties indicated that grafting of acrylic monomers decreased the melting temperature of the pure shellac films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sheorey DS, Shastri AS, Dorle AK (1991) Int J Pharm 68:19

    Article  CAS  Google Scholar 

  2. Hassiruzzaman M, Khan MA, Ali KMI (1999) J Appl Polym Sci 72:1131

    Article  CAS  Google Scholar 

  3. Limmatvapirat S, Limmatvapirat C, Luangtana-anan M, Nunthanid J, Oguchi T, Tozuka Y, Yamamoto K, Puttipipatkhachorn S (2004) Int J Pharm 278:41

    Article  CAS  Google Scholar 

  4. Chambliss WG (1992) Enteric coatings. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology, vol 5. Marcel Dekker, New York, p 189

    Google Scholar 

  5. Martin Shellac J (1982) Kirk-Othmer Encycl Chem Technol 20:737

    Google Scholar 

  6. Chang R, Iturrioz G, Luo C (1990) Int J Pharm 60:171

    Article  CAS  Google Scholar 

  7. McGuire RG, Hagenmaier RD (1996) Biol Control 7:100

    Article  Google Scholar 

  8. Specht F, Saugestad M, Waaler T, Müller BW (1998) Pharm Technol Eur 10:20

    CAS  Google Scholar 

  9. Kundu AK, Ray SS, Mukherjea RN, Maiti S (1986) Angew Makromol Chem 143:197

    Article  CAS  Google Scholar 

  10. Goswami DN, Kumar S (1984) Angew Makromol Chem 126:145

    Article  CAS  Google Scholar 

  11. Ansari MF, Goswami DN (2006) J Pigment Resin Technol 35:183

    Article  CAS  Google Scholar 

  12. Yoshii F, Suhartini M, Nagasawa N, Mitomo H, Kume T (2003) Nucl Instr Method Phys Res B 208:370

    Article  CAS  Google Scholar 

  13. Ferdous S, Mustafa AI, Khan MA (2003) J Micromol Sci A 40:817

    Article  Google Scholar 

  14. Hsiue G, Yang J, Wu R (1988) J Biomed Mater Res 22:405

    Article  CAS  Google Scholar 

  15. Haque P, Mustafa AI, Khan MA (2007) Carbohydr Polym 68:109

    Article  CAS  Google Scholar 

  16. Fitzgerald JJ, Landry CJT (1990) J Appl Polym Sci 40:1727

    Article  CAS  Google Scholar 

  17. Nakamura Y, Yamaguchi M, Kitayama A, Iko K, Okubo M, Matsumoto T (1990) J Appl Polym Sci 39:1045

    Article  CAS  Google Scholar 

  18. Peppas NA (1987) Hydrogels in medicine and pharmacy, vol 1. CRC Press, Boca Raton, p 1

    Google Scholar 

  19. Tabata Y, Tagawa S (eds) (1991) CRC handbook of radiation chemistry. CRC Press, Boston, p 742

    Google Scholar 

  20. Kume T, Takehisa M (1983) Agric Biol Chem 47:889

    CAS  Google Scholar 

  21. Kume T, Nagasawa N, Yoshii F (2002) Radiat Phys chem 63:625

    Article  CAS  Google Scholar 

  22. Wach RA, Mitomo H, Yoshii F, Kume T (2001) J Appl Polym Sci 81:3030

    Article  CAS  Google Scholar 

  23. Zhao L, Mitomo H, Nagasawa N, Yoshii F, Kume T (2003) Carbohydr Polym 51:169

    Article  CAS  Google Scholar 

  24. Song CL, Yoshii F, Kume TJ (2001) J Micromol Sci A 38:961

    Article  Google Scholar 

  25. Khan MA, Ali KMI, Al Imam MR, Mannan R (1997) J Polym Plast Technol Eng 36:89

    CAS  Google Scholar 

  26. Khan MA, Hassan MM (2004) Polym Surf Modif Relev Adhes 3:263

    CAS  Google Scholar 

  27. Ali KMI, Khan MA, Ali MA (1996) J Appl Polym Sci 60:879

    Article  CAS  Google Scholar 

  28. Khan MA, Ali KMI (1993) J Appl Polym Sci 49:1989

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubarak A. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoshal, S., Khan, M.A., Khan, R.A. et al. Study on the Thermo-Mechanical and Biodegradable Properties of Shellac Films Grafted with Acrylic Monomers by Gamma Radiation. J Polym Environ 18, 216–223 (2010). https://doi.org/10.1007/s10924-010-0182-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0182-3

Keywords

Navigation