Skip to main content
Log in

A Numerical Study on Interlaminar Defects Characterization in Fibre Metal Laminates with Flying Laser Spot Thermography

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This work describes a numerical study on non-destructive evaluation of interlayer disbond defects in aerospace grade Fibre Metal Laminate sheets (FMLs). A recently proposed infrared non-destructive testing setup is considered, where a continuous laser is moved over the material surface, while the thermal footprint of the moving heat source is acquired, e.g. by an infrared thermal camera. Interlayer disbonds are then detected by analysing the features of the acquired thermograms. The experimental feasibility of this approach has been recently proved. The present work proposes a numerical simulation of the NDT approach, where the material thermal response is analysed and correlated to defects signatures. The numerical study has in particular investigated the influence of a number of different features on the defect detectability, and on the accuracy of defect edges and position identification. Such features comprise different FML materials (GLARE, CARAL, Ti-Gr), laser heat deposition and regions of data analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Sinmazçelik, T., Avcu, E., Bora, M.T., Çoban, O.: A review: fibre metal laminates, background, bonding types and applied test methods. Mater. Des. 32(7), 3671–3685 (2011)

    Article  Google Scholar 

  2. Vermeeren, C.A.J.R.: An historic overview of the development of fibre metal laminates. Appl. Compos. Mater. 10(4), 189–205 (2003)

    Article  Google Scholar 

  3. Sinke, J.: Some inspection methods for quality control and in-service inspection of GLARE. Appl. Compos. Mater. 10, 277–291 (2003)

    Article  Google Scholar 

  4. Bieniaś, J.: Fibre metal laminates—some aspects of manufacturing process, structure and selected properties. Compos. Theory Pract. 11, 39–43 (2011)

    Google Scholar 

  5. Hundley, J.M., Hahn, H., Yang, J., Facciano, A.: Multi-scale modeling of metal-composite interfaces in titanium-graphite fiber metal laminates part i: molecular scale. Open J. Compos. Mater. 1, 19–37 (2011)

    Article  Google Scholar 

  6. Cerniglia, D., Montinaro, N., Nigrelli, V.: Detection of disbonds in multi-layer structures by laser-based ultrasonic technique. J. Adhes. 84(10), 811–829 (2008)

    Article  Google Scholar 

  7. Cerniglia, D., Pantano, A., Montinaro, N.: 3D simulations and experiments of guided wave propagation in adhesively bonded multi-layered structures. NDT&E Int. 43, 527–535 (2010)

    Article  Google Scholar 

  8. Bisle, W., Meier, T., Mueller, S., Rueckert, S.: In-service inspection concept for GLARE\(\textregistered \) e an example for the use of new UT array inspection system. ECNDT Tu.2.1.1 (2006)

  9. Bonavolonta, C., Valentino, M., Marrocco, N., Pepe, G.P.: Eddy current technique based on SQUID and GMR sensors for non-destructive evaluation of fiber/metal laminates. IEEE Trans. Appl. Supercond. 19(3), 808–811 (2009)

    Article  Google Scholar 

  10. Ibarra-Castanedo, C., Avdelidis, N.P., Grinzato, E.G., Bison, P.G., Marinetti, S., Plescanu, C.C., et al.: Delamination detection and impact damage assessment of GLARE by active thermography. Int. J. Mater. Prod. Technol. 41(1e2—-3e4), 5–16 (2011)

    Article  Google Scholar 

  11. Palumbo, D., Galietti, U.: Damage investigation in composite materials by means of new thermal data processing procedures. Strain 52(4), 276–285 (2016)

    Article  Google Scholar 

  12. Pitarresi, G.: Lock-in signal post-processing techniques in infra-red thermography for materials structural evaluation. Exp. Mech. 55(4), 667–680 (2015)

    Article  Google Scholar 

  13. Meola, C., Squillace, A., Giorleo, G., Nele, L.: Experimental characterization of an innovative Glare\(\textregistered \) fiber reinforced metal laminate in pin bearing. J. Compos. Mater. 37(17), 1543–1552 (2003)

    Article  Google Scholar 

  14. Montinaro, N., Cerniglia, D., Pitarresi, G.: Detection and characterisation of disbonds on fibre metal laminate hybrid composites by flying laser spot thermography. Compos. Part B 108, 164–173 (2017)

    Article  Google Scholar 

  15. Montinaro, N., Cerniglia, D., Pitarresi, G.: Flying laser spot thermography technique for the NDE of fibre metal laminates disbonds. Compos. Struct. 171, 63–76 (2017)

    Article  Google Scholar 

  16. Schlichting, J., Maierhofer, Ch., Kreutzbruck, M.: Crack sizing by laser excited thermography. NDT&E Int. 45, 133–140 (2012)

    Article  Google Scholar 

  17. Qiu, J., Pei, C., Liu, H., Chen, Z., Demachi, K.: Remote inspection of surface cracks in metallic structures with fiber-guided laser array spots thermography. NDT & E Int. 92, 213–220 (2017)

    Article  Google Scholar 

  18. He, M., Zhang, L., Zheng, W., Feng, Y.: Crack detection based on a moving mode of eddy current thermography method. Measurement 109, 119–129 (2017)

    Article  Google Scholar 

  19. Yang, R., He, Y., Gao, B., Yun Tian, G., Peng, J.: Lateral heat conduction based eddy current thermography for detection of parallel cracks and rail tread oblique cracks. Measurement 66, 54–61 (2015)

    Article  Google Scholar 

  20. Thiama, A., Kneipa, J.C., Cicala, E., Caulierb, Y., Jouvarda, J.M., Matteia, S.: Modeling and optimization of open crack detection by flying spot thermography. NDT & E Int. 89, 67–73 (2017)

    Article  Google Scholar 

  21. Montinaro, N., Cerniglia, D., Pitarresi, G.: Evaluation of interlaminar delaminations in titanium-graphite fibre metal laminates by infrared NDT techniques. NDT&E Int. (2018). https://doi.org/10.1016/j.ndteint.2018.05.004

    Article  Google Scholar 

  22. Almond, D.P., Saintey, S., Lau, S.K.: Edge effects and defect sizing by transient thermography. In: Proceedings of Quantitative Infrared Thermography QIRT’94, Eurotherm Seminar no. 42, Sorrento, Italy, August 23–26, 1994, pp. 247–252 (1994)

  23. Vavilov, V.P., Pawar, S.: Determining the lateral size of subsurface defects during active thermal nondestructive testing. Rus. J. Nondestruct. Test. 52(9), 528–531 (2016)

    Article  Google Scholar 

  24. Montinaro, N., Cerniglia, D., Pitarresi, G.: A numerical and experimental study through laser thermography for defect detection on metal additive manufactured parts. Fratt. ed Integr. Strutt. 43, 231–240 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Montinaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montinaro, N., Cerniglia, D. & Pitarresi, G. A Numerical Study on Interlaminar Defects Characterization in Fibre Metal Laminates with Flying Laser Spot Thermography. J Nondestruct Eval 37, 41 (2018). https://doi.org/10.1007/s10921-018-0494-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0494-0

Keywords

Navigation