Skip to main content
Log in

Local Non-contact Evaluation of the ac Magnetic Hysteresis Parameters of Electrical Steels by the Barkhausen Noise Technique

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The potential of the magnetic Barkhausen noise method for local repeatable testing of the magnetic hysteresis properties of electrical steels was investigated. Strips of non-oriented and grain-oriented electrical steels were magnetized by a single yoke through 0–10 mm air gaps. The measurements were performed at standard ac conditions: 50 Hz sine induction waveform with different amplitudes. A vertically mounted array of three Hall sensors was used for the direct measurement of the surface magnetic field. The Barkhausen noise was detected locally by a surface-mounted pancake coil. The simultaneous measurement of the actual sample field makes it possible to stabilize a recently introduced parameter, called Barkhausen noise coercivity. This parameter demonstrates strong linear correlations to the hysteresis coercive force and to the hysteresis losses measured by the standard single sheet tester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Matyuk, V.F., Goncharenko, S.A., Hartmann, H., Reichelt, H.: Modern state of nondestructive testing of mechanical properties and stamping ability of steel sheets in a manufacturing technological flow. Russ. J. Nondestruct. Test. 39, 347–380 (2003)

    Article  Google Scholar 

  2. Iranmanesh, H., Tahouri, B., Moses, A.J., Beckley, P.: A computerised Rogowski-Chattock potentiometer compensated on-line power-loss measuring system for use on grain-oriented electrical steel production lines. J. Magn. Magn. Mater. 112, 99–102 (1992)

    Article  Google Scholar 

  3. Stupakov, O., Perevertov, O., Stoyka, V., Wood, R.: Correlation between hysteresis and Barkhausen noise parameters of electrical steels. IEEE Trans. Magn. 46, 517–520 (2010)

    Article  Google Scholar 

  4. Birsan, M., Szpunar, J.A., Krause, T.W., Atherton, D.L.: Correlation between the Barkhausen noise power and the total power losses in 3 % Si–Fe. J. Appl. Phys. 79, 6042–6044 (1996)

    Article  Google Scholar 

  5. Patel, H.V., Zurek, S., Meydan, T., Jiles, D.C., Li, L.: A new adaptive automated feedback system for Barkhausen signal measurement. Sens. Actuators A, Phys. 129, 112–117 (2006)

    Article  Google Scholar 

  6. Xin, Q., Shu, D., Wei, W., Chen, J.: Magnetic Barkhausen noise, metal magnetic memory testing and estimation of the ship plate welded structure stress. J. Nondestruct. Eval. 31, 80–89 (2012)

    Article  Google Scholar 

  7. Franco, F.A., González, M.F.R., Campos, M.F., Padovese, L.R.: Relation between magnetic Barkhausen noise and hardness for Jominy quench tests in SAE 4140 and 6150 steels. J. Nondestruct. Eval. 32, 93–103 (2013)

    Article  Google Scholar 

  8. Stupakov, O., Pal’a, J., Takagi, T., Uchimoto, T.: Governing conditions of repeatable Barkhausen noise response. J. Magn. Magn. Mater. 321, 2956–2962 (2009)

    Article  Google Scholar 

  9. Boller, C., Altpeter, I., Dobmann, G., Rabung, M., Schreiber, J., Szielasko, K., Tschuncky, R.: Electromagnetism as a means for understanding materials mechanics phenomena in magnetic materials. Mat.-Wiss. Werkstofftech. 42, 269–278 (2011)

    Article  Google Scholar 

  10. Stupakov, O.: System for controllable magnetic measurement with direct field determination. J. Magn. Magn. Mater. 324, 631–636 (2012)

    Article  Google Scholar 

  11. Stupakov, O.: Controllable magnetic hysteresis measurement of electrical steels in a single-yoke open configuration. IEEE Trans. Magn. 48, 4718–4726 (2012)

    Article  Google Scholar 

  12. Stupakov, O.: Barkhausen noise sensor with direct field control. Sens. Lett. 11, 209–212 (2013)

    Article  Google Scholar 

  13. Stupakov, O., Perevertov, O., Tomáš, I., Skrbek, B.: Evaluation of surface decarburization depth by magnetic Barkhausen noise technique. J. Magn. Magn. Mater. 323, 1692–1697 (2011)

    Article  Google Scholar 

  14. Perevertov, O., Schäfer, R.: Influence of applied compressive stress on the hysteresis curves and magnetic domain structure of grain-oriented transverse Fe–3 %Si steel. J. Phys. D, Appl. Phys. 45, 135001 (2012), 11 pp.

    Article  Google Scholar 

  15. Cheng, W.: Pulsed eddy current testing of carbon steel pipes’ wall-thinning through insulation and cladding. J. Nondestruct. Eval. 31, 215–224 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The author appreciates the financial support of the Czech Science Foundation (GACR) under projects 102/09/P108 and 13-18993S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Stupakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stupakov, O. Local Non-contact Evaluation of the ac Magnetic Hysteresis Parameters of Electrical Steels by the Barkhausen Noise Technique. J Nondestruct Eval 32, 405–412 (2013). https://doi.org/10.1007/s10921-013-0194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-013-0194-8

Keywords

Navigation