Skip to main content
Log in

Acoustic Emission Sensor Calibration for Absolute Source Measurements

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This paper describes sensor calibration and signal analysis techniques applicable to the method of acoustic emission (AE) and ultrasonic testing. They are particularly useful for obtaining absolute measurements of AE wave amplitude and shape, which can be used to constrain the physics and mechanics of the AE source. We illustrate how to perform calibration tests on a thick plate and how to implement two different mechanical calibration sources: ball impact and glass capillary fracture. In this way, the instrument response function can be estimated from theory, without the need for a reference transducer. We demonstrate the methodology by comparing calibration results for four different piezoelectric acoustic emission sensors: Physical Acoustics (PAC) PAC R15, PAC NANO30, DigitalWave B1025, and the Glaser-type conical sensor. From the results of these tests, sensor aperture effects are quantified and the accuracy of calibration source models is verified. Finally, this paper describes how the effects of the sensor can be modeled using an autoregressive-moving average (ARMA) model, and how this technique can be used to effectively remove sensor-induced distortion so that a displacement time history can be retrieved from recorded signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, R., McIntire, P.: Nondestructive Testing Handbook Second Edition, vol. 5: Acoustic Emission Testing. American Society for Nondestructive Testing, Columbus (1987)

    Google Scholar 

  2. Grosse, C., Ohtsu, M.: Acoustic Emission Testing: Basics for Research—Applications in Civil Engineering; With Contributions by Numerous Experts. Springer, Heidelberg (2008)

    Google Scholar 

  3. McLaskey, G., Glaser, S.: Hertzian impact: experimental study of the force pulse and resulting stress waves. J. Acoust. Soc. Am. 128, 1087–1096 (2010)

    Article  Google Scholar 

  4. McLaskey, G., Glaser, S.: Micromechanics of asperity rupture during laboratory stick slip experiments. Geophys. Res. Lett. 38, L12302 (2011)

    Article  Google Scholar 

  5. Hsu, N., Breckenridge, F.: Characterization of acoustic emission sensors. Mater. Eval. 39, 60–68 (1981)

    Google Scholar 

  6. Eitzen, D., Breckenridge, F.: Acoustic emission sensors and their calibration. In: Miller, R., McIntire, P. (eds.) Nondestructive Testing Handbook Second Edition, vol. 5: Acoustic Emission Testing, pp. 121–132. American Society for Nondestructive Testing, Columbus (1987)

    Google Scholar 

  7. Hatano, H., Watanabe, T.: Reciprocity calibration of acoustic emission transducers in Rayleigh-wave and longitudinal-wave sound fields. J. Acoust. Soc. Am. 101, 1450–1455 (1997)

    Article  Google Scholar 

  8. Proctor, T.: An improved piezoelectric acoustic emission transducer. J. Acoust. Soc. Am. 71, 1163–1168 (1982)

    Article  Google Scholar 

  9. McLaskey, G., Glaser, S.: High-fidelity conical piezoelectric transducers and finite element models utilized to quantify elastic waves generated from ball collisions. In: Tomizuka, M., Yun, C., Giurgiutiu, V. (eds.) Proc. SPIE, vol. 7292, pp. 72920S-1–72920S-18 (2009)

    Google Scholar 

  10. Sansalone, M., Street, W.: Impact Echo: Nondestructive Evaluation of Concrete and Masonry. Bulbrier Press, Ithaca (1997)

    Google Scholar 

  11. Hsu, N., Simmons, J., Hardy, S.: An approach to acoustic emission signal analysis—theory and experiment. Mater. Eval. 35, 100–106 (1977)

    Google Scholar 

  12. Stump, B., Johnson, L.: The determination of source properties by the linear inversion of seismograms. Bull. Seismol. Soc. Am. 67, 1489–1502 (1977)

    Google Scholar 

  13. Aki, K., Richards, P.: Quantitative Seismology: Theory and Methods. Freeman, San Francisco (1980), Chapter 4

    Google Scholar 

  14. To, A., Glaser, S.: Full waveform inversion of a 3-D source inside an artificial rock. J. Sound Vib. 285, 835–857 (2005)

    Article  Google Scholar 

  15. Oppenheim, A., Schafer, R.: Discrete Time Signal Processing, 2nd edn. Prentice Hall, New Jersey (1999)

    Google Scholar 

  16. Breckenridge, F., Proctor, T., Hsu, N., Fick, S., Eitzen, D.: Transient sources for acoustic emission work. In: Yamaguchi, K., Takahashi, H., Niitsuma, H. (eds.) Progress in Acoustic Emission V, pp. 20–37. The Japanese Society for NDI, Sendai (1990)

    Google Scholar 

  17. Hsu, N.: Acoustic emission simulator, U.S. Patent No. 4018084 (1977)

  18. Breckenridge, F., Tscheigg, C., Greenspan, M.: Acoustic emission: some applications of Lamb’s Problem. J. Acoust. Soc. Am. 57, 626–631 (1975)

    Article  Google Scholar 

  19. Goldsmith, W.: Impact. Dover, New York (2001)

    MATH  Google Scholar 

  20. Scruby, C., Drain, L.: Laser Ultrasonics: Techniques and Applications. Taylor & Francis, London (1990)

    Google Scholar 

  21. White, J.: Seismic Waves: Radiation, Transmission, and Attenuation. McGraw-Hill, New York (1965)

    Google Scholar 

  22. Johnson, L.: Green’s function for Lamb’s problem. Geophys. J. R. Astron. Soc. 37, 99–131 (1974)

    Article  MATH  Google Scholar 

  23. Hsu, N.: Dynamic Green’s functions of an infinite plate—a computer program. Technical Report No. NBSIR 85-3234, National Bureau of Standards, Center for Manufacturing Engineering, Gaithersburg, MD (1985)

  24. Pekeris, C.: The seismic surface pulse. Proc. Natl. Acad. Sci. 41, 469–480 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  25. Knopoff, L.: Surface motions of a thick plate. J. Appl. Phys. 29, 661–670 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  26. Michaels, J.: Fundamentals of deconvolution with applications to ultrasonics and acoustic emission. MS thesis, Cornell University, Ithaca (1982)

  27. Shumway, R., Stoffer, D.: Time Series Analysis and Its Applications. Springer, New York (2006)

    MATH  Google Scholar 

  28. Ljung, L.: System Identification: Theory for the User. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  29. Marple, S. Jr., Lawrence, S.: Digital Spectral Analysis with Applications. Prentice-Hall, Englewood Cliffs (1987)

    Google Scholar 

  30. Ljung, L.: System Identification Toolbox, for Use with Matlab. The Mathworks, Natick (2006)

    Google Scholar 

  31. Baise, L., Glaser, S., Sugano, T.: Consistency of dynamic site response at port island. Earthquake Eng. Struct. Dyn. 30, 803–818 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory C. McLaskey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLaskey, G.C., Glaser, S.D. Acoustic Emission Sensor Calibration for Absolute Source Measurements. J Nondestruct Eval 31, 157–168 (2012). https://doi.org/10.1007/s10921-012-0131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-012-0131-2

Keywords

Navigation