Skip to main content
Log in

Characterization of Dual-Phase Steels Using Magnetic Barkhausen Noise Technique

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The aim of this work is to nondestructively characterize the dual phase steels using the Magnetic Barkhausen Noise (MBN) method. By quenching of AISI 8620 steel specimens having two different starting microstructures, from various intercritical annealing temperatures (ICAT) in the ferrite-austenite region, the microstructures consisting of different volume fractions of martensite with morphological variations have been obtained. The microstructures were first conventionally characterized by metallographical investigations and hardness tests. Then, the MBN measurements were performed using a μSCAN commercial system. Good correlations between the martensite volume fraction, hardness and MBN emission have been obtained. MBN signal height clearly decreased as the ICAT, therefore the volume fraction of martensite increased. The effect of the initial microstructure prior to intercritical annealing has also been differentiated by the MBN measurements. It has been concluded that MBN method can be used as a useful tool for nondestructive characterization of dual phase steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Erdogan, M.: Effect of austenite dispersion on phase transformation in dual phase steel. Scr. Mater. 48, 501–506 (2003)

    Article  Google Scholar 

  2. Lawson, R.D., Matlock, D.K., Krauss, G.: In: Kott, R.A., Bramfitt, B.L. (eds.) Fundamentals of Dual-Phase Steels, pp. 347–381. AIME, New York (1981)

    Google Scholar 

  3. Sarwar, M., Priestner, R.: Influence of ferrite–martensite microstructural morphology on tensile properties of dual-phase steels. J. Mater. Sci. 31, 2091–95 (1996)

    Article  Google Scholar 

  4. Tomita, Y.: Effect of morphology of second-phase martensite on tensile properties of Fe-0.1C dual phase steels. J. Mater. Sci. 25, 5179–84 (1990)

    Article  Google Scholar 

  5. Bag, A., Ray, K.K., Dwarakadasa, E.S.: Influence of martensite content and morphology of tensile and impact properties of high-martensite dual-phase steels. Metall. Mater. Trans. A 30, 1193–1202 (1999)

    Article  Google Scholar 

  6. Modi, A.P.: Effects of microstructure and experimental parameters on high stress abrasive wear behavior of a 0.19 wt% C dual phase steel. Tribol. Int. (2006, in press)

  7. Al-Abbasi, F.M., Nemes, J.A.: Micromechanical modeling of dual phase steels. Int. J. Mech. Sci. 45, 1449–65 (2003)

    Article  MATH  Google Scholar 

  8. Anglada-Rivera, J., Padovese, L.R., Capo-Sanchez, J.: Magnetic Barkhausen noise and hysteresis loop in commercial carbon steel: influence of applied tensile stress and grain size. J. Magn. Magn. Mater. 231, 299–306 (2001)

    Article  Google Scholar 

  9. Clapham, L., Jagadish, C., Atherton, D.L.: The influence of pearlite on Barkhausen noise generation in plain carbon steels. Acta Metal. Mater. 39, 1555–62 (1991)

    Article  Google Scholar 

  10. Koo, K.M., Yau, M.Y., Dickon, H.L., Ng, Lo, C.C.H.: Characterization of pearlite grains in plain carbon steel by Barkhausen emission. Mater. Sci. Eng. A 351, 310–315 (2003)

    Article  Google Scholar 

  11. Meszaros, I., Kaldor, M., Hidasi, B.: Barkhausen noise energy measurement method for characterizing the ferromagnetic ratio of alloys. Mater. Sci. Forum 210–213, 31–38 (1996)

    Article  Google Scholar 

  12. Moorthy, V., Vaidyanathan, S., Raj, B., Jayakumar, T., Kashyap, B.P.: Insight into the microstructural characterization of ferritic steels using micromagnetic parameters. Metall. Mater. Trans. A 31, 1053–65 (2000)

    Article  Google Scholar 

  13. Saquet, O., Chicois, J., Vincent, A.: BN from plain carbon steel: influence of the microstructure. Mater. Sci. Eng. A 269, 73–82 (1999)

    Article  Google Scholar 

  14. Gür, C.H., Cam, I.: Investigation of as-quenched and tempered commercial steels by Magnetic Barkhausen Noise method. Int. J. Microstruct. Mater. Prop. 1, 208–218 (2006)

    Article  Google Scholar 

  15. Okazaki, T., Ueno, T., Furuya, T., Spearing, M., Hagood, N.W.: Detectability of stress-induced martensite phase in ferromagnetic shape memory alloy Fe–30.2at. % Pd by Barkhausen noise method. Acta Mater. 52, 5169–5175 (2004)

    Article  Google Scholar 

  16. Blaow, M., Evans, J.T., Shaw, B.A.: Effect of hardness and composition gradients on Barkhausen emission in case hardened steel. J. Magn. Magn. Mater. 303, 153–159 (2006)

    Article  Google Scholar 

  17. Gür, C.H., Cam, I.: Comparison of magnetic Barkhausen noise and ultrasonic velocity measurements for microstructure evaluation of SAE 1040 and SAE 4140 steels. Mater. Charact. 58, 447–454 (2007)

    Article  Google Scholar 

  18. Kleber, X., Hug, A., Merlin, J., Soler, M.: Ferrite-martensite steels characterization using magnetic Barkhausen noise measurements. ISIJ Int. 44, 1033–39 (2004)

    Google Scholar 

  19. Meszaros, I., Szabo, P.J.: Complex magnetic and microstructural investigation of duplex stainless steel. NDT&E Int. 38, 517–521 (2005)

    Article  Google Scholar 

  20. Andrews, K.W.: Empirical formulae for the calculation of some transformation temperatures. J. Iron Steel Inst. Jpn. 203, 721–727 (1965)

    Google Scholar 

  21. Bayram, A., Uz, A.U., Ula, M.: Effects of microstructure and notches on the mechanical properties of dual-phase steels. Mater. Charact. 43, 259–269 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Gür.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, M., Gür, C.H. & Erdogan, M. Characterization of Dual-Phase Steels Using Magnetic Barkhausen Noise Technique. J Nondestruct Eval 26, 79–87 (2007). https://doi.org/10.1007/s10921-007-0022-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-007-0022-0

Keywords

Navigation