Skip to main content
Log in

Dynamic Piezoresistivity Calibration for Eddy Current Nondestructive Residual Stress Measurements

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

It has been recently demonstrated [M. P. Blodgett and P. B. Nagy, J. Nondestruct. Eval. 23, 107 (2004)] that eddy current conductivity measurements can be exploited for near-surface residual stress assessment in surface-treated nickel-base superalloy components. To quantitatively assess the prevailing residual stress from eddy current conductivity measurements, the piezoresistivity coefficients of the material must be first determined using known external applied stresses. These calibration measurements are usually conducted on a reference specimen of the same material using cyclic uniaxial loads between 0.1 and 10Hz, which is fast enough to produce adiabatic conditions. Therefore, the question arises whether dynamic calibration measurements can be used or not for accurately assessing the sensitivity of the eddy current method for static residual stress. It is demonstrated in this paper that such dynamic calibration measurements should be corrected for the thermoelastic effect, which is always positive, i.e., it increases the conductivity in tension, when the material cools down, and reduces it in compression, when the material heats up. For low-conductivity titanium and nickel-base engine alloys the thermoelastic corrections are relatively modest at ≈5–10%, but for high-conductivity aluminum alloys the difference between the adiabatic and isothermal properties could be as high as 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Goldfine, 41st Army Sagamore Conference, Plymouth, MA, August 1994.

  2. N. Goldfine, D. Clark, and T. Lovett, EPRI Topical Workshop: Electromagnetic NDE Applications in the Electric Power Industry, Charlotte, NC, August 1995.

  3. F. C. Schoenig Jr., J. A. Soules, H. Chang, and J. J. DiCillo, Mater. Eval. 53, 22 (1995).

    Google Scholar 

  4. N. Goldfine and D. Clark, EPRI Balance of Plant Heat Exchanger NDE Symposium, Jackson, WY, June 1996.

  5. H. Chang, F. C. Schoenig Jr., and J. A. Soules, Mater. Eval. 57, 1257 (1999).

    Google Scholar 

  6. A Primer on the Alternating Current Potential Difference Technique, Matelect Systems, Nepean, Ontario, 1999, pp. 18–21.

  7. A. I. Lavrentyev, P. A. Stucky, and W. A. Veronesi, Review of Progress in Quantitative Nondestructive Evaluation, Vol. 19, edited by D. E. Chimenti and D. O. Thompson, AIP, Melville, 2000, pp. 1621–1628.

  8. J. M. Fisher, N. Goldfine, and V. Zilberstein, 49th Defense Working Group on NDT, Biloxy, MS, October 2000.

  9. V. Zilberstein, Y. Sheiretov, A. Washabaugh, Y. Chen, and N. J. Goldfine, Review of Progress in Quantitative Nondestructive Evaluation, Vol. 20, edited by D. E. Chimenti and D. O. Thompson, AIP, Melville, 2001, pp. 985–995.

  10. M. P. Blodgett and P. B. Nagy, J. Nondestruct. Eval. 23, 107 (2004).

    Article  Google Scholar 

  11. F. Yu and P. B. Nagy, J. Appl. Phys. 95, 8340 (2004).

    Google Scholar 

  12. C. S. Smith, Solid State Physics, Advance in Research and Applications, Vol. 6, edited by F. Seitz and D. Turnbull, Academic Press, New York, pp. 175–249, 1958.

  13. M. Bao and Y. Huang, J. Micromech. Microeng. 14, 332 (2004).

    Article  Google Scholar 

  14. E. Barsis, E. Williams, and C. Skoog, J. Appl. Phys. 41, 5155 (1970).

    Article  Google Scholar 

  15. Z. Rosenberg, D. Yaziv, and Y. Partom, J. Appl. Phys. 51, 4790 (1980).

    Google Scholar 

  16. Y. Partom, D. Yaziv, and Z. Rosenberg, J. Appl. Phys. 52, 4610 (1981).

    Article  Google Scholar 

  17. Y. Partom, Z. Rosenberg, and B. Keren, J. Appl. Phys. 56, 552 (1984).

    Article  Google Scholar 

  18. D. Y. Chen, Y. M. Gupta, and M. H. Miles, J. Appl. Phys. 55, 3984 (1984).

    Google Scholar 

  19. G. Arlt, J. Appl. Phys. 49, 4273 (1978).

    Article  Google Scholar 

  20. P. W. Bridgman, The Physics of High Pressure, MacMillan, New York, pp. 257–294, 1931.

    Google Scholar 

  21. P. W. Bridgman, Solids Under Pressure, edited by W. Paul and D. M. Warschauer, McGraw-Hill, New York, pp. 1–11, 1963.

  22. Z. Rosenberg, D. Yaziv, and Y. Partom, J. Appl. Phys. 51, 3702 (1980).

    Google Scholar 

  23. M. Blodgett and P. B. Nagy, Appl. Phys. Lett. 72, 1045 (1998).

    Article  Google Scholar 

  24. N. J. Goldfme, Mater. Eval. 51, 396 (1993).

    Google Scholar 

  25. G. C. Kuczynski, Phys. Rev. 94, 61 (1954).

    Article  Google Scholar 

  26. O. Watanabe, Strain Gage and its Application, Japanese Industry News Agency Publication, p. 16, 1977.

  27. C. Hu, Y. Q. Gao, and Z. Sheng, J. Mater. Sci. 35, 381 (2000).

    Google Scholar 

  28. Y. Q. Gao and W. Wang, Mater. Sci. Eng. 92, 153 (1987).

    Google Scholar 

  29. Z. Rosenberg, Mater. Sci. Eng. 100, L9 (1988).

    Google Scholar 

  30. D. E. Grady and M. J. Ginsberg, J. Appl. Phys. 48, 2179 (1977).

    Article  Google Scholar 

  31. N. Harwood and W. M. Cummings, Thermoelastic Stress Analysis, Adam Hilger, Bristol, UK, pp. 168–171, 1991.

    Google Scholar 

  32. J. D. Lord and L. P. Orkney, Measurement Notes, National Physical Laboratory of United Kingdom, 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Nagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, F., Nagy, P.B. Dynamic Piezoresistivity Calibration for Eddy Current Nondestructive Residual Stress Measurements. J Nondestruct Eval 24, 143 (2005). https://doi.org/10.1007/s10921-005-8783-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-005-8783-9

Keywords

Navigation