Skip to main content
Log in

A New Bacterial Growth Graph Pattern Analysis to Improve Positive Predictive Value of Continuous Monitoring Blood Culture System

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

False positive signals (FPSs) of continuous monitoring blood culture system (CMBCS) cause delayed reporting time and increased laboratory cost. This study aimed to analyze growth graphs digitally in order to identify specific patterns of FPSs and true positive signals (TPSs) and to find the method for improving positive predictive value (PPV) of FPS and TPS. 606 positive signal samples from the BACTEC FX (BD, USA) CMBCS with more than one hour of monitoring data after positive signal were selected, and were classified into FPS and TPS groups using the subculture results. The pattern of bacterial growth graph was analyzed in two steps: the signal stage recorded using the monitoring data until positive signal and the post-signal stage recorded using one additional hour of monitoring data gained after the positive signal. The growth graph before the positive signal consists of three periods; initial decline period, stable period, and steeping period. Signal stage analyzed initial decline period and stable period, and classified the graphs as standard, increasing, decreasing, irregular, or defective pattern, respectively. Then, all patterns were re-assigned as confirmed or suspicious pattern in the post-signal stage. Standard, increasing, and decreasing patterns with both initial decline period and stable period are typical patterns; irregular patterns lacking a smooth stable period and defective patterns without an initial decline period are false positive patterns. The false positive patterns have 77.2% of PPV for FPS. The confirmed patterns, showing a gradually increasing fluorescence level even after positive signal, have 97.0% of PPV for TPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Melamed, A., and Sorvillo, F. J., The burden of sepsis-associated mortality in the United States from 1999 to 2005: an analysis of multiple-cause-of-death data. Crit. Care 13:R28, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kumar, A., Ellis, P., Arabi, Y., Roberts, D., Light, B., Parrillo, J. E., Dodek, P., Wood, G., Kumar, A., and Simon, D., Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 136:1237–1248, 2009.

    Article  PubMed  Google Scholar 

  3. Dilnessa, T., Demeke, G., Mengistu, G., and Bitew, A., Emerging Blood Culture Technologies for Isolation of Blood Pathogens at Clinical Microbiology Laboratories. J. Med. Microbiol. Diagn. 5:227, 2016.

    Article  Google Scholar 

  4. Marchandin, H., Compan, B., De Buochberg, M. S., Despaux, E., and Perez, C., Detection kinetics for positive blood culture bottles by using the VITAL automated system. J. Clin. Microbiol. 33:2098–2101, 1995.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Reimer, L. G., Wilson, M. L., and Weinstein, M. P., Update on detection of bacteremia and fungemia. Clin. Microbiol. Rev. 10:444–465, 1997.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fiori, B., D'Inzeo, T., Di Florio, V., De Maio, F., De Angelis, G., Giaquinto, A., Campana, L., Tanzarella, E., Tumbarello, M., and Antonelli, M., Performance of two resin-containing blood culture media in the detection of bloodstream infections and in direct MALDI-TOF broth assays for isolate identification: clinical comparison of the BacT/ALERT Plus and BACTEC Plus Systems. J. Clin. Microbiol. 52:3558–3567, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schieffer, K., Tan, K., Stamper, P., Somogyi, A., Andrea, S., Wakefield, T., Romagnoli, M., Chapin, K., Wolk, D., and Carroll, K., Multicenter evaluation of the Sepsityper™ extraction kit and MALDI-TOF MS for direct identification of positive blood culture isolates using the BD BACTEC™ FX and VersaTREK® diagnostic blood culture systems. J. Appl. Microbiol. 116:934–941, 2014.

    Article  CAS  PubMed  Google Scholar 

  8. Uh, Y., Jang, I. H., Park, S. D., Kim, K. S., Seo, D. M., Yoon, K. J., Choi, H. K., Kim, Y. K., and Kim, H. Y., Factors influencing the false positive signals of continuous monitoring blood culture system. Ann. Clin. Microbiol. 17:58–64, 2014.

    Article  Google Scholar 

  9. Lee, C., Lin, W., Shih, H., Wu, C., Chen, P., Lee, H., Lee, N., Chang, C., Wang, L., and Ko, W., Clinical significance of potential contaminants in blood cultures among patients in a medical center. J. Microbiol. Immunol. Infect. 40:438, 2007.

    PubMed  Google Scholar 

  10. Park, S. H., Shim, H., Yoon, N. S., and Kim, M.-N., Clinical relevance of time-to-positivity in BACTEC9240 blood culture system. Korean J. Lab. Med. 30:276–283, 2010.

    Article  PubMed  Google Scholar 

  11. Li, J., Plorde, J. J., and Carlson, L. G., Effects of volume and periodicity on blood cultures. J. Clin. Microbiol. 32:2829–2831, 1994.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mermel, L. A., and Maki, D. G., Detection of bacteremia in adults: consequences of culturing an inadequate volume of blood. Ann. Intern. Med. 119:270–272, 1993.

    Article  CAS  PubMed  Google Scholar 

  13. Plorde, J. J., Tenover, F. C., and Carlson, L., Specimen volume versus yield in the BACTEC blood culture system. J. Clin. Microbiol. 22:292–295, 1985.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Garthright, W., Refinements in the prediction of microbial growth curves. Food Microbiol. 8:239–248, 1991.

    Article  Google Scholar 

  15. Perni, S., Andrew, P. W., and Shama, G., Estimating the maximum growth rate from microbial growth curves: definition is everything. Food Microbiol. 22:491–495, 2005.

    Article  Google Scholar 

  16. Yates, G. T., and Smotzer, T., On the lag phase and initial decline of microbial growth curves. J. Theor. Biol. 244:511–517, 2007.

    Article  PubMed  Google Scholar 

  17. Peleg, M., Corradini, M. G., and Normand, M. D., The logistic (Verhulst) model for sigmoid microbial growth curves revisited. Food Res. Int. 40:808–818, 2007.

    Article  Google Scholar 

  18. Peleg, M., and Corradini, M. G., Microbial growth curves: what the models tell us and what they cannot. Crit. Rev. Food Sci. Nutr. 51:917–945, 2011.

    Article  PubMed  Google Scholar 

  19. Chang-Li, X., Hou-Kuhan, T., Zhau-Hua, S., Song-Sheng, Q., Yao-Ting, L., and Hai-Shui, L., Microcalorimetric study of bacterial growth. Thermochim. Acta 123:33–41, 1988.

    Article  Google Scholar 

  20. Braissant, O., Bonkat, G., Wirz, D., and Bachmann, A., Microbial growth and isothermal microcalorimetry: growth models and their application to microcalorimetric data. Thermochim. Acta 555:64–71, 2013.

    Article  CAS  Google Scholar 

  21. Braissant, O., Bachmann, A., and Bonkat, G., Microcalorimetric assays for measuring cell growth and metabolic activity: Methodology and applications. Methods 76:27–34, 2015.

    Article  CAS  PubMed  Google Scholar 

  22. Belle, A., Thiagarajan, R., Soroushmehr, S., Navidi, F., Beard, D. A., and Najarian, K., Big data analytics in healthcare. Biomed. Res. Int. 2015:370194, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Uh.

Ethics declarations

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

This article is part of the Topical Collection on Image & Signal Processing

K. A. and J.-H. A. contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, K., Ahn, JH., Kim, J. et al. A New Bacterial Growth Graph Pattern Analysis to Improve Positive Predictive Value of Continuous Monitoring Blood Culture System. J Med Syst 42, 189 (2018). https://doi.org/10.1007/s10916-018-1046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-1046-y

Keywords

Navigation