Skip to main content
Log in

Using a Calculated Pulse Rate with an Artificial Neural Network to Detect Irregular Interbeats

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Heart rate is an important clinical measure that is often used in pathological diagnosis and prognosis. Valid detection of irregular heartbeats is crucial in the clinical practice. We propose an artificial neural network using the calculated pulse rate to detect irregular interbeats. The proposed system measures the calculated pulse rate to determine an “irregular interbeat on” or “irregular interbeat off” event. If an irregular interbeat is detected, the proposed system produces a danger warning, which is helpful for clinicians. If a non-irregular interbeat is detected, the proposed system displays the calculated pulse rate. We include a flow chart of the proposed software. In an experiment, we measure the calculated pulse rates and achieve an error percentage of < 3 % in 20 participants with a wide age range. When we use the calculated pulse rates to detect irregular interbeats, we find such irregular interbeats in eight participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hamilton, T. T., Huber, L. M., and Jessen, M. E., PulseCO: A less-invasive method to monitor cardiac output from arterial pressure after cardiac surgery. Ann. Thorac. Surg. 74(4):1408–1412, 2002.

    Article  Google Scholar 

  2. Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., and Sornmo, L., Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE T Bio-Med. Eng. 47(7):838–847, 2000.

    Article  CAS  Google Scholar 

  3. Petković, D., Ćojbašić, Ž., and Lukić, S., Adaptive neuro fuzzy selection of heart rate variability parameters affected by autonomic nervous system. Expert Syst. Appl. 40(11):4490–4495, 2013.

    Article  Google Scholar 

  4. Osowski, S., and Hoai, L. T., ECG beat recognition using fuzzy hybrid neural network. IEEE T Bio-Med. Eng. 48(11):1265–1271, 2001.

    Article  CAS  Google Scholar 

  5. Turkoglu, I., Arslan, A., and Ilkay, E., An expert system for diagnosis of the heart valve diseases. Expert Syst. Appl. 23(3):229–236, 2002.

    Article  Google Scholar 

  6. Paalasmaa, J., A respiratory latent variable model for mechanically measured heartbeats. Physiol. Meas. 31:1331–1344, 2010.

    Article  PubMed  Google Scholar 

  7. Ghaffari, A., Homaeinezhad, M. R., Khazraee, M., and Daevaeiha, M. M., Segmentation of Holter ECG waves via analysis of a discrete wavelet-derived multiple skewness–kurtosis based metric. Ann. Biomed. Eng. 38(4):1497–1510, 2010.

    Article  PubMed  CAS  Google Scholar 

  8. Allen, J., Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3):R1–39, 2007.

    Article  PubMed  Google Scholar 

  9. Gil, E., Orini, M., Bail, R., Vergara, J. M., Mainardi, L., and Laguna, P., Photoplethysmography pulse rate variabiity as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol. Meas. 31(9):1271–1290, 2010.

    Article  PubMed  CAS  Google Scholar 

  10. Hall, P., and Jungner, I., Hard drinking water and ischemic heart disease: Calcium, bloodlipids, and acute myocardial infarcts. J. Med. Syst. 17(3–4):277–281, 1993.

    Article  PubMed  CAS  Google Scholar 

  11. Yüksel, Ö., A new approach to detection of ECG arrhythmias-complex discrete wavelet transform based complex valued artificial neural network. J. Med. Syst. 33(6):435–445, 2009.

    Article  Google Scholar 

  12. Bruser, C., Stadlthanner, K., De Waele, S., and Leonhardt, S., Adaptive Beat-to-Beat heart rate estimation in Ballistocardiograms. IEEE T Inf. Technol B 15(5):778–786, 2011.

    Article  Google Scholar 

  13. Melis, M. D., Morbiducci, U., Rietzschel, E. R., Buyzere, M. D., Qasem, A., Bortel, L. V., Claessens, T., Montevecchi, F. M., Avolio, A., and Segers, P., Blood pressure waveform analysis by means of wavelet transform. Med. Biol. Eng. Comput. 47(2):165–173, 2009.

    Article  PubMed  Google Scholar 

  14. Lu, G., Yang, F., Taylor, J. A., and Stein, J. F., A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects. J. Med. Eng. Technol. 33(8):634–641, 2009.

    Article  PubMed  CAS  Google Scholar 

  15. Lu, G., and Yang, F., Limitations of oximetry to measure heart rate variability measures. Cardiovasc. Eng. 9(3):119–25, 2009.

    Article  PubMed  Google Scholar 

  16. Orini, M., Mainardi, L T., Gil, E., Laguna, P., Bailon, R., Dynamic assessment of spontaneous baroreflex sensitivity by means of time-frequency analysis using either RR or pulse interval variability. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1630–1633, 2010.

  17. Mohan, A., James, F., Fazil, S., and Joseph, P. K., Design and development of a heart rate variability analyzer. J. Med. Syst. 36(1):33–40, 2012.

    Article  Google Scholar 

  18. Hofer, E., Keplinger, F., Thurner, T., Wiener, T., Quintana, D. S., Climent, V., and Plank, G., A new floating sensor array to detect electric near fields of beating heart preparations. Biosens. Bioelectron. 21(12):2232–2239, 2006.

    Article  PubMed  CAS  Google Scholar 

  19. Tay, F. E. H., Guo, D. G., Xu, L., Nyan, M. N., and Yap, K. L., MEMSWear-biomonitoring system for remote vital signs monitoring. J. Franklin I 346(6):531–542, 2009.

    Article  Google Scholar 

  20. Rheinberger, K., Steinberger, T., Unterkofler, K., Baubin, M., Klotz, A., and Amann, A., Removal of CPR artifacts from the ventricular fibrillation ECG by adaptive regression on lagged reference signals. IEEE T Bio-Med. Eng. 55(1):130–137, 2008.

    Article  Google Scholar 

  21. John, J., and Liszka-Hackzell, Categorization of fetal heart rate patterns using neural networks. J. Med. Syst. 25(4):269–276, 2001.

    Article  Google Scholar 

  22. Mateo, J., and Laguna, P., Analysis of heart rate variability in the presence of ectopic beats using the heart timing signal. IEEE T Bio-Med. Eng. 50(3):334–343, 2003.

    Article  Google Scholar 

  23. Xue, Q., Hu, Y. H., and Tompkins, W. J., Neural-network-based adaptive matched filtering for QRS detection. IEEE T Bio-Med. Eng. 39(4):317–329, 1992.

    Article  CAS  Google Scholar 

  24. Don, S., Duckwon, C., Eunmi, C., and Dugki, M., An awareness approach to analyze ECG streaming data. J. Med. Syst. 37(23):9901–9913, 2013.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Chang Gung University Research Program UERPD2C0071. The authors wish to thank the High Speed Intelligent Communication (HSIC) Research Center at the Chang Gung University, Taiwan, for providing facilities and financial support that were crucial to our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bih-Chyun Yeh.

Additional information

This article is part of the Topical Collection on Education & Training

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, BC., Lin, WP. Using a Calculated Pulse Rate with an Artificial Neural Network to Detect Irregular Interbeats. J Med Syst 40, 48 (2016). https://doi.org/10.1007/s10916-015-0409-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0409-x

Keywords

Navigation