Skip to main content

Advertisement

Log in

A Semi-Automatic Coronary Artery Segmentation Framework Using Mechanical Simulation

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

CVD (cardiovascular disease) is one of the biggest threats to human beings nowadays. An early and quantitative diagnosis of CVD is important in extending lifespan and improving people’s life quality. Coronary artery stenosis can prevent CVD. To diagnose the degree of stenosis, the inner diameter of coronary artery needs to be measured. To achieve such measurement, the coronary artery is segmented by using a method that is based on morphology and the continuity between computed tomography image slices. A centerline extraction method based on mechanical simulation is proposed. This centerline extraction method can figure out a basic framework of the coronary artery by simulating pixel dots of the artery image into mass points. Such mass points have tensile forces, with which the outer pixel dots can be drawn to the center. Subsequently, the centerline of the coronary artery can be outlined by using the local line-fitting method. Finally, the nearest point method is adopted to measure the inner diameter. Experimental results showed that the methods proposed in this paper can precisely extract the centerline of the coronary artery and can accurately measure its inner diameter, thereby providing a basis for quantitative diagnosis of coronary artery stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barbier, P., Solomon, S. B., Schiller, N. B., and Glantz, S. A., Left atrial relaxation and left ventricular systolic function determine left atrial reservoir function. Circulation 100(4):427–436, 1999.

    Article  CAS  PubMed  Google Scholar 

  2. Rossi, A., Cicoira, M., Zanolla, L., Sandrini, R., Golia, G., Zardini, P., and Enriquez-Sarano, M., Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 40(8):1425–1430, 2002.

    Article  PubMed  Google Scholar 

  3. Pritchett, A. M., Mahoney, D. W., Jacobsen, S. J., Rodeheffer, R. J., Karon, B. L., and Redfield, M. M., Diastolic dysfunction and left atrial volume: a population-based study. J. Am. Coll. Cardiol. 45(1):87–92, 2005.

    Article  PubMed  Google Scholar 

  4. Mueller, D., and Maeder, A., Robust semi-automated path extraction for visualising stenosis of the coronary arteries. Comput. Med. Imaging Graph. 32(6):463–475, 2008.

    Article  PubMed  Google Scholar 

  5. Hernandez-Vela, A., Gatta, C., Escalera, S., Igual, L., Martin-Yuste, V., Sabate, M., and Radeva, P., Accurate coronary centerline extraction, caliber estimation, and catheter detection in angiographies. IEEE Trans. Inf. Technol. Biomed. 16(6):1332–1340, 2012.

    Article  PubMed  Google Scholar 

  6. Boskamp, T., Rinck, D., Link, F., Kümmerlen, B., Stamm, G., and Mildenberger, P., New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imageing data sets. RadioGraphics 24(1):287–297, 2004.

    Article  PubMed  Google Scholar 

  7. Hennemuth, A., Bock, S., Boskamp, T., Fritz, D., Kühnel, C., Rinck, D., Scheuering, M., and Peitgen, H. O., One-click coronary tree segmentation in CT angiographic images. Int. Congr. Ser. 1281(1):317–321, 2005.

    Article  Google Scholar 

  8. Bouraoui, B., Ronse, C., Baruthio, J., Passat, N., and Germain, P., 3D segmentation of coronary arteries based on advanced mathematical morphology techniques. Comput. Med. Imaging Graph. 34(5):377–387, 2010.

    Article  CAS  PubMed  Google Scholar 

  9. Shang, Y., Deklerck, R., Nyssen, E., Markova, A., de Mey, J., Yang, X., and Sun, K., Vascular active contour for vessel tree segmentation. IEEE Trans. Biomed. Eng. 58(4):1023–1032, 2011.

    Article  PubMed  Google Scholar 

  10. Sanz-Requena, R., Moratal, D., García-Sánchez, D. R., Bodí, V., Rieta, J. J., and Sanchis, J. M., Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies. Comput. Med. Imaging Graph. 31(2):71–80, 2007.

    Article  PubMed  Google Scholar 

  11. Schmid, V. J., Voxel-based adaptive spatio-temporal modelling of perfusion cardiovascular MRI. IEEE Trans. Med. Imaging 30(7):1305–1313, 2011.

    Article  PubMed  Google Scholar 

  12. Friman, O., Hindennach, M., Kühnel, C., and Peitgen, H. O., Multiple hypothesis template tracking of small 3D vessel structures. Med. Image Anal. 14(2):160–171, 2010.

    Article  PubMed  Google Scholar 

  13. Shang, Y., Yang, X., Zhu, L., Deklerck, R., and Nyssen, E., Region competition based active contour for medical object extraction. Comput. Med. Imaging Graph. 32(2):109–117, 2008.

    Article  PubMed  Google Scholar 

  14. Lee, J., Beighley, P., Ritman, E., and Smith, N., Automatic segmentation of 3D micro-CT coronary vascular images. Med. Image Anal. 11(6):630–647, 2007.

    Article  PubMed  Google Scholar 

  15. Mazonakis, M., Grinias, E., Pagonidis, K., Tziritas, G., and Damilakis, J., Development and evaluation of a semiautomatic segmentation method for the estimation of LV parameters on cine MR images. Phys. Med. Biol. 55(4):1127–1140, 2010.

    Article  PubMed  Google Scholar 

  16. Bai, W., Shi, W., O’Regan, D. P., Tong, T., Wang, H., Jamil-Copley, S., Peters, N. S., and Rueckert, D., A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans. Med. Imaging 32(7):1302–1315, 2013.

    Article  PubMed  Google Scholar 

  17. Aylward, S. R., and Bullitt, E., Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21(2):61–75, 2002.

    Article  PubMed  Google Scholar 

  18. Chen K., Zhang Y., Pohl K., Syeda-Mahmood T., Song Z., and Wong S. T., Coronary artery segmentation using geometric moments based tracking and snake-driven refinement, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3133–3137, 2010.

  19. Chen, Z., and Molloi, S., Automatic 3D vascular tree construction in CT angiography. Comput. Med. Imaging Graph. 27(6):469–479, 2003.

    Article  PubMed  Google Scholar 

  20. Li, L. H., Huang, Y. S., Yang, R. Q., and Wu, X. M., Segmentation of coronary artery from dual-source CT images. Chin. J. Tissue Eng. Res. 16(39):7298–7301, 2012.

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Guangdong Natural Science Foundation under Grant No.S2013040014993, the State Scholarship Fund under Grant CSC NO.201408440326,the Pearl River S&T Nova Program of Guangzhou under Grant No.2014J2200049 and No.201506010035, the Guangdong Provincial Science and Technology Program under Grant No.2013B090600057 and No.2014A020215006, the Fundamental Research Funds for the Central Universities under Grant No.2014ZG003D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongqian Yang.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, K., Yang, R., Li, L. et al. A Semi-Automatic Coronary Artery Segmentation Framework Using Mechanical Simulation. J Med Syst 39, 129 (2015). https://doi.org/10.1007/s10916-015-0329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0329-9

Keywords

Navigation