Skip to main content

Advertisement

Log in

Developing a Real Time Electrocardiogram System Using Virtual Bio-Instrumentation

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Today bio-manufacturers propose various electrocardiogram (ECG) instruments that have addressed a wide variety of clinical issues. However, the discovery of new applications in ECG devices that provide doctors with the right information at the right time and in the right way will help them to provide a highest quality care possible. In this paper, we focus on the development of an accurate and robust virtual bio-instrument. The important goals of the described project is to provide online new diagnostic informations, an accurate analysis algorithm applied to the acquired signals, data capture from commercial monitors, fast real time ECG acquisition, real time data display and recording of real ECG signals which results in the improvement of data availability. The virtual bio-instrument is validated and tested on the level of robustness, diagnostic accuracy, diagnostic impact and Human - System Interface (HSI) functioning with collaboration of the cardiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bansala, D., Khanb, M., and Salhanc, A. K., A computer based wireless system for online acquisition, monitoring and digital processing of ECG waveforms. Comput. Biol. Med. 39(4):361–367, 2009. doi:10.1016/j.compbiomed.2009.01.013.

    Article  Google Scholar 

  2. Topal, T., Polat, H., and Güler, İ., Software development for the analysis of heartbeat sounds with LabVIEW in diagnosis of cardiovascular disease. J. Med. Syst. 32(5):409–421, 2008. doi:10.1007/s10916-008-9146-8.

    Article  Google Scholar 

  3. Salvatore, N., and Ciro, S., Approaches to evaluate the virtual instrumentation measurement uncertainties. IEEE Trans. Instrum. Meas. 51(6):1347–1352, 2002. doi:10.1109/TIM.2002.808036.

    Article  Google Scholar 

  4. Güler, N. F., Software development for medical instrumentation. J. Med. Syst. 25(1):21–26, 2001. doi:10.1023/A:1005632231593.

    Article  Google Scholar 

  5. Kara, S., İstek, D., and Okandan, M., Low-cost instrumentation for the diagnosis of Hirschsprung’s disease. J. Med. Syst. 27(2):157–162, 2003. doi:10.1023/A:1021813027694.

    Article  Google Scholar 

  6. Logeswaran, R., Cost effective patient location monitoring system using webcams. J. Med. Syst. 33(5):399–407, 2009. doi:10.1007/s10916-008-9202-4.

    Article  Google Scholar 

  7. Jameson, R., Lorence, D., and Lin, J., Data capture of Transdermal glucose monitoring through computerized appliance-based virtual remote sensing and alert systems. J. Med. Syst. 36(4):2193–2201, 2012. doi:10.1007/s10916-011-9686-1.

    Article  Google Scholar 

  8. Shin, W., Cha, Y. D., and Yoon, G., ECG/PPG integer signal processing for a ubiquitous health monitoring system. J. Med. Syst. 34(5):891–898, 2010. doi:10.1007/s10916-009-9304-7.

    Article  Google Scholar 

  9. Tan, T. H., Chang, C. S., Huang, Y. F., Chen, Y. F., and Lee, C., Development of a portable Linux-based ECG measurement and monitoring system. J. Med. Syst. 35(4):559–569, 2011. doi:10.1007/s10916-009-9392-4.

    Article  Google Scholar 

  10. Parvis, M., and Vallan, A., Medical measurements and uncertainties. IEEE Instrum. Meas. Mag. 5(2):12–17, 2002. doi:10.1109/MIM.2002.1005654.

    Article  Google Scholar 

  11. Philippe, C., Hélène, L., Christine, F., and Catherine, M., Denoising of the uterine EHG by an undecimated wavelet transform. IEEE Trans. Biomed. Eng. 45(9):1104–1113, 1998. doi:10.1109/10.709554.

    Article  Google Scholar 

  12. Seyd, A., Joseph, P. K., and Jacob, J., Automated diagnosis of diabetes using heart rate variability signals. J. Med. Syst. 36(3):1935–1941, 2012. doi:10.1007/s10916-011-9653-x.

    Article  Google Scholar 

  13. Mohan, A., James, F., Fazil, S., and Joseph, P. K., Design and development of a heart rate variability analyzer. J. Med. Syst. 36(3):1365–1371, 2012. doi:10.1007/s10916-010-9597-6.

    Article  Google Scholar 

  14. Rajendra, A. U., Paul, J. K., Kannathal, N., et al., Heart rate variability: a review. Med. Biol. Eng. Comput. 44(12):1031–1051, 2006. doi:10.1007/s11517-006-0119-0.

    Article  Google Scholar 

  15. Subasi, A., and Kiymik, M. K., Muscle fatigue detection in EMG using time–frequency methods, ICA and neural networks. J. Med. Syst. 34(4):777–785, 2010. doi:10.1007/s10916-009-9292-7.

    Article  Google Scholar 

  16. Özbay, Y., A new approach to detection of ECG arrhythmias: complex discrete wavelet transform based complex valued artificial neural network. J. Med. Syst. 33(6):435–445, 2009. doi:10.1007/s10916-008-9205-1.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the team of child, health and Development (CHU), and the anonymous reviewers for their careful readings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalifa Elmansouri.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elmansouri, K., Latif, R., Nassiri, B. et al. Developing a Real Time Electrocardiogram System Using Virtual Bio-Instrumentation. J Med Syst 38, 39 (2014). https://doi.org/10.1007/s10916-014-0039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0039-8

Keywords

Navigation