Skip to main content
Log in

Telediagnosis of Parkinson’s Disease Using Measurements of Dysphonia

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurological illness which impairs motor skills, speech, and other functions such as mood, behavior, thinking, and sensation. It causes vocal impairment for approximately 90% of the patients. As the symptoms of PD occur gradually and mostly targeting the elderly people for whom physical visits to the clinic are inconvenient and costly, telemonitoring of the disease using measurements of dysphonia (vocal features) has a vital role in its early diagnosis. Such dysphonia features extracted from the voice come in variety and most of them are interrelated. The purpose of this study is twofold: (1) to select a minimal subset of features with maximal joint relevance to the PD-score, a binary score indicating whether or not the sample belongs to a person with PD; and (2) to build a predictive model with minimal bias (i.e. to maximize the generalization of the predictions so as to perform well with unseen test examples). For these tasks, we apply the mutual information measure with the permutation test for assessing the relevance and the statistical significance of the relations between the features and the PD-score, rank the features according to the maximum-relevance-minimum-redundancy (mRMR) criterion, use a Support Vector Machine (SVM) for building a classification model and test it with a more suitable cross-validation scheme that we called leave-one-individual-out that fits with the dataset in hand better than the conventional bootstrapping or leave-one-out validation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ]Little, M. A., McSharry, P. E., Hunter, E. J., Ramig, L. O., Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 2009. doi:10.1109/TBME.2008.2005954.

  2. Ishihara, L., and Brayne, C., A systematic review of depression and mental illness preceding Parkinson’s disease. Acta Neurol. Scand. 113 (4)211–220, 2006. doi:10.1111/j.1600-0404.2006.00579.x.

    Article  Google Scholar 

  3. Jankovic, J., Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry. 79:368–376, 2008. doi:10.1136/jnnp.2007.131045.

    Article  Google Scholar 

  4. Huse, D. M., Schulman, K., Orsini, L., Castelli-Haley, J., Kennedy, S., and Lenhart, G., Burden of illness in Parkinson’s disease. Mov. Disord. 20:1449–1454, 2005. doi:10.1002/mds.20609.

    Article  Google Scholar 

  5. Ho, A. K., Iansek, R., Marigliani, C., and Bradshaw, J. L., Gates, S., Speech impairment in a large sample of patients with Parkinson’s disease. Behav. Neurol. 11:131–137, 1998.

    Google Scholar 

  6. Ruggiero, C., Sacile, R., and Giacomini, M., Home telecare. J. Telemed. Telecare. 5:11–17, 1999. doi:10.1258/1357633991932333.

    Article  Google Scholar 

  7. Little, M. A., McSharry, P. E., Roberts, S. J., Costello, D. A., and Moroz, I. M., Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. Biomed. Eng. Online. 6:23, 2007. doi:10.1186/1475-925X-6-23.

    Article  Google Scholar 

  8. Godino-Llorente, J. I., and Gomez-Vilda, P., Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors. IEEE Trans. Biomed. Eng. 51:380–384, 2004. doi:10.1109/TBME.2003.820386.

    Article  Google Scholar 

  9. Rahn, D. A., Chou, M., Jiang, J. J., and Zhang, Y., Phonatory impairment in Parkinson’s disease: Evidence from nonlinear dynamic analysis and perturbation analysis. J. Voice. 21:64–71, 2007. doi:10.1016/j.jvoice.2005.08.011.

    Article  Google Scholar 

  10. Guyon, I., and Elisseeff, A., An introduction to variable and feature selection. J. Mach. Learn. Res. 3:1157–1182, 2003. doi:10.1162/153244303322753616.

    Article  MATH  Google Scholar 

  11. Peng, H., Long, F., and Ding, C., Feature selection based on mutual information: criteria of max-dependency, max-relevance and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27 (8)1226–1238, 2005. doi:10.1109/TPAMI.2005.159.

    Article  Google Scholar 

  12. Shannon, C. E., A mathematical theory of communication. Bell System Technical Journal. 27:379–423, 623–656, 1948.

    MathSciNet  Google Scholar 

  13. Good, P., Permutation Tests. Springer, New York, p. 270, 1994.

    MATH  Google Scholar 

  14. Hsu, C. W., and Lin, C. J., A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Netw. 13:415–425, 2002. doi:10.1109/TNN.2002.1000139.

    Article  Google Scholar 

  15. Efron, B., Bootstrap methods: Another look at the jackknife. Ann. Stat. 7:1–26, 1979. doi:10.1214/aos/1176344552.

    Article  MATH  MathSciNet  Google Scholar 

  16. Reunanen, J., Overfitting in making comparisons between variable selection methods. J. Mach. Learn. Res. 3:1371–1382, 2003. doi:10.1162/153244303322753715.

    Article  MATH  Google Scholar 

  17. Molinaro, A., Simon, R., and Pfeiffer, R., Prediction error estimation: A comparison of resampling methods. Bioinformatics. 21:3301–3307, 2005. doi:10.1093/bioinformatics/bti499.

    Article  Google Scholar 

  18. Liu, R. Y., Bootstrap procedures under some non-i.i.d. models. Ann. Stat. 16:1696–1708, 1988. doi:10.1214/aos/1176351062.

    Article  MATH  Google Scholar 

  19. Wu, C. F. J., Jackknife, bootstrap, and other resampling methods in regression analysis (with discussion). Ann. Stat. 14:1261–1295, 1986. doi:10.1214/aos/1176350142.

    Article  MATH  Google Scholar 

  20. Azuaje, F., Genomic data sampling and its effect on classification performance assessment. BMC Bioinformatics. 4:5, 2003. doi:10.1186/1471-2105-4-5.

    Article  Google Scholar 

  21. Learning Repository, U.C.I.: http://archive.ics.uci.edu/ml/, June 2008.

  22. Ding, C., and Peng, H., Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 3 (2)185–205, 2005. doi:10.1142/S0219720005001004.

    Article  MathSciNet  Google Scholar 

  23. Kwak, N., and Choi, C. H., Input feature selection by mutual information based on Parzen Window. IEEE Trans. Pattern Anal. Mach. Intell. 24 (12)1667–1671, 2002. doi:10.1109/TPAMI.2002.1114861.

    Article  Google Scholar 

  24. Hsu, C. W., Lin, C. J., A Comparison of methods for multi-class support vector machines. IEEE Trans. Neural Netw. 13:415–425, 2002. LIBSVM software available for download at http://www.csie.ntu.edu.tw/~cjlin/libsvm. doi:10.1109/TNN.2002.1000139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Okan Sakar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakar, C.O., Kursun, O. Telediagnosis of Parkinson’s Disease Using Measurements of Dysphonia. J Med Syst 34, 591–599 (2010). https://doi.org/10.1007/s10916-009-9272-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9272-y

Keywords

Navigation