Skip to main content
Log in

Automated Diagnosis of Glaucoma Using Digital Fundus Images

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Glaucoma is a disease of the optic nerve caused by the increase in the intraocular pressure of the eye. Glaucoma mainly affects the optic disc by increasing the cup size. It can lead to the blindness if it is not detected and treated in proper time. The detection of glaucoma through Optical Coherence Tomography (OCT) and Heidelberg Retinal Tomography (HRT) is very expensive. This paper presents a novel method for glaucoma detection using digital fundus images. Digital image processing techniques, such as preprocessing, morphological operations and thresholding, are widely used for the automatic detection of optic disc, blood vessels and computation of the features. We have extracted features such as cup to disc (c/d) ratio, ratio of the distance between optic disc center and optic nerve head to diameter of the optic disc, and the ratio of blood vessels area in inferior-superior side to area of blood vessel in the nasal-temporal side. These features are validated by classifying the normal and glaucoma images using neural network classifier. The results presented in this paper indicate that the features are clinically significant in the detection of glaucoma. Our system is able to classify the glaucoma automatically with a sensitivity and specificity of 100% and 80% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Acharya, U. R., Ng, E. Y. K., and Suri, J. S., Image modelling of human eye. Artech House, MA, USA, 2008a, April.

    Google Scholar 

  2. Acharya, U. R., Chua, K. C., Ng, E. Y. K., Wei, W., and Chee, C., Application of higher order spectra for the identification of diabetes retinopathy stages. J. Med. Syst. USA, 2008b. doi:10.1007/s10916-008-9154-8.

  3. Bizios, D., Heijl, A., and Bengtsson, B., Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms. J. Glaucoma. 16:120–28, 2007. doi:10.1097/IJG.0b013e31802b34e4.

    Article  Google Scholar 

  4. Bowd, C., Chan, K., Zangwill, L. M., Goldbaum, M. H., Lee, T. W., Sejnowski, T. J., et al. Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Invest. Ophthalmol. Vis. Sci. 43:3444–3454, 2002.

    Google Scholar 

  5. Caprioli, J., and Miller, J., Measurement of relative nerve fiber layer surface height in Glaucoma. Ophthalmology. 96:633–641, 1989.

    Google Scholar 

  6. Chan, K., Lee, T.-W., Sample, P. A., Goldbaum, M. H., Weinreb, R. N., and Sejnowski, T. J., Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Trans. Biomed. Eng. 49:9963–974, 2002. doi:10.1109/TBME.2002.802012.

    Article  Google Scholar 

  7. Jaffe, G. J., and Caprioli, J. C., Optical coherence tomography to detect and manage retinal disease and glaucoma. Am. J. Ophthalmol. 137:156–169, 2004.

    Article  Google Scholar 

  8. Gonzalez, R. C., and Wintz, P., Digital image processing, 2nd edition. Addison-Wesley, Reading, MA, 1987.

    Google Scholar 

  9. Greaney, M. J., Hoffman, D. C., Garway-Heath, D. F., et al. Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. Invest. Ophthalmol. Vis. Sci. 43:140–145, 2002.

    Google Scholar 

  10. Haykin, S., Neural networks a comprehensive foundation. 2nd edn. Pearson Education, 1999.

  11. Hermann, M. M., Theofylaktopoulos, I., Bangard, N., Jonescu-Cuypers, C., Coburger, S., and Diestelhorst, M., Optic nerve head morphometry in healthy adults using confocal laser scanning tomography. Br. J. Ophthalmol. 88:6761–765, 2004. doi:10.1136/bjo.2003.028068.

    Article  Google Scholar 

  12. Hermann, M. M., David, F., Garway-Heath, D. F., Jonescu-Cuypers, C. P., Reinhard, O. W., Burk, R. O. W., Jost, B., Jonas, J. B., Mardin, C. Y., Funk, J., and Diestelhorst, M., Interobserver variability in confocal optic nerve analysis (HRT). Int. Ophthalmol. 26:4–5143–149, 2005. doi:10.1007/s10792-006-9022-9.

    Google Scholar 

  13. Hitchings, R. A., and Spaeth, G. L., The optic disc in glaucoma, ii: correlation of appearance of the optic disc with the visual field. Br. J. Ophthalmol. 61:107–113, 1977. doi:10.1136/bjo.61.2.107.

    Article  Google Scholar 

  14. Lippman, R. P., An Introduction to computing with neural nets. IEEE ASSP Mag. (April):4–22 (1987). doi:10.1109/MASSP.1987.1165576.

  15. Losch, B., Application of fuzzy sets to the diagnosis of glaucoma. Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology, 4, 1550–1552, 1996.

  16. Medeiros, F. A., and Susanna, R. Jr., Comparison of algorithms for detection of localized nerve fiber defects using scanning laser polarimetry. Br. J. Ophthalmol. 87:413–419, 2003. doi:10.1136/bjo.87.4.413.

    Article  Google Scholar 

  17. Nayak, J., Bhat, P. S., Acharya, U. R., Lim, C. M., and Kagathi, M., Automated identification of different stages of diabetic retinopathy using digital fundus images. J. Med. Syst. USA. 32:2107–115, 2008. doi:10.1007/s10916-007-9113-9.

    Article  Google Scholar 

  18. Parfitt, C. M., Mikelberg, F. S., and Swindale, N. V., The detection of glaucoma using an artificial neural network. Proceedings of 17th Annual Conference IEEE Engineering in Medicine and Biology, 1, 847–848, 1995.

  19. Song, X., Chen, Y., Song, K., and Chen, Y., A computer-based diagnosis system for early glaucoma screening. Proceedings of the 27th Annual IEEE Engineering in Medicine and Biology, 6608–6611, 2005.

  20. Ulieru, M., Cuzzani, O., Rubin, S. H., and Ceruti, M. G., Application of soft computing methods to the diagnosis and prediction of glaucoma. Proc. IEEE Int. Conf. Syst. Man Cybern. 5:3641–3645, 2000.

    Google Scholar 

  21. Walter, T., Klein, J. C., Massin, P., and Erginay, A., A contribution of image processing to the diagnosis of diabetic retinopathy—detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging. 21:1236–1243, 2002. doi:10.1109/TMI.2002.806290.

    Article  Google Scholar 

  22. Wong, L. Y., Acharya, U. R., Venkatesh, Y. V., Chee, C., Lim, C. M., and Ng, E. Y. K., Identification of different stages of diabetic retinopathy using retinal optical images. Inf. Sci. 178(1):106, 121, 2008.

    Google Scholar 

  23. www.glaucoma.org, last accessed March-2008.

  24. www.clevelandsightcenter.org.

  25. Yegnanarayana, B., Artificial neural networks. Prentice-Hall of India, New Delhi, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Acharya U..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayak, J., Acharya U., R., Bhat, P.S. et al. Automated Diagnosis of Glaucoma Using Digital Fundus Images. J Med Syst 33, 337 (2009). https://doi.org/10.1007/s10916-008-9195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-008-9195-z

Keywords

Navigation