Skip to main content
Log in

A Local Radial Basis Function Method for the Laplace–Beltrami Operator

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce a new local meshfree method for the approximation of the Laplace–Beltrami operator on a smooth surface in \({\mathbb {R}}^3\). It is a direct method that uses radial basis functions augmented with multivariate polynomials. A key element of this method is that it does not need an explicit expression of the surface, which can be simply defined by a set of scattered nodes. Likewise, it does not require expressions for the surface normal vectors or for the curvature of the surface, which are approximated using explicit formulas derived in the paper. An additional advantage is that it is a local method and, hence, the matrix that approximates the Laplace–Beltrami operator is sparse, which translates into good scalability properties. The convergence, accuracy and other computational characteristics of the proposed method are studied numerically. Its performance is shown by solving two reaction–diffusion partial differential equations on surfaces; the Turing model for pattern formation, and the Schaeffer’s model for electrical cardiac tissue behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alvarez, D., Alonso-Atienza, F., Rojo-Alvarez, J.L., Garcia-Alberola, A., Moscoso, M.: Shape reconstruction of cardiac ischemia from non-contact intracardiac recordings: a model study. Math. Comput. Model. 55, 1770–1781 (2012)

    Article  MathSciNet  Google Scholar 

  2. Alvarez, D., Gonzalez-Rodriguez, P., Moscoso, M.: A closed-form formula for the RBF-based approximation of the Laplace–Beltrami operator. J. Sci. Comput. 77, 1115 (2018)

    Article  MathSciNet  Google Scholar 

  3. Barnett, G.A.: A Robust RBF-FD Formulation Based on Polyharmonic Splines and Polynomials. Ph.d. thesis, University of Colorado, Boulder (2015)

  4. Bayona, V., Flyer, N., Fornberg, B.: On the role of polynomials in rbf-fd approximations: III behavior near domain boundaries. J. Comput. Phys. 380, 378–399 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bayona, V.: An insight into RBF-FD approximations augmented with polynomials. Comput. Math. Appl. 77, 2337–2353 (2019)

    Article  MathSciNet  Google Scholar 

  6. Barreira, R., Elliott, C.M., Madzvamuse, A.: The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol. 63, 1095–1119 (2011)

    Article  MathSciNet  Google Scholar 

  7. Bertalmio, M., Cheng, L.-T., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174, 759–780 (2001)

    Article  MathSciNet  Google Scholar 

  8. Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  9. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01), pp. 67–76 (2001)

  10. Chaplain, M.A., Ganesh, M., Graham, I.G.: Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol. 42, 387–423 (2001)

    Article  MathSciNet  Google Scholar 

  11. Chavez, C.E., Zemzemi, N., Coudillere, Y., Alonso-Atienza, F., Alvarez, D.: Inverse problem of electrocardiography: estimating the location of cardiac isquemia in a 3D geometry. In: Functional Imaging and Modelling of the Heart (FIMH2015) (2015)

  12. Dziuk, G., Elliott, C.: Surface finite elements for parabolic equations. J. Comput. Math. 25, 385–407 (2007)

    MathSciNet  Google Scholar 

  13. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. World Scientific Publishers, Singapore (2007)

    Book  Google Scholar 

  14. Fonberg, B., Flyer, N.: A primer on radial basis functions with applications to geosciences. In: CBMS-NSF Regional Conference Series in Applied Mathematics (2015)

  15. Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230, 2270–2285 (2011)

    Article  MathSciNet  Google Scholar 

  16. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33, 869–892 (2011)

    Article  MathSciNet  Google Scholar 

  17. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2004)

    Article  MathSciNet  Google Scholar 

  18. Flyer, N., Fornberg, B., Bayona, V., Barnett, G.: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016)

    Article  MathSciNet  Google Scholar 

  19. Flyer, N., Fornberg, B.: Radial basis functions: developments and applications to planetary scale flows. Comput. Fluids 26, 23–32 (2011)

    Article  MathSciNet  Google Scholar 

  20. Flyer, N., Wright, G.B.: A radial basis function method for the shallow water equations on a sphere. Proc. R. Soc. A 465, 1949–1976 (2009)

    Article  MathSciNet  Google Scholar 

  21. Fuselier, E.J., Wright, G.B.: A high order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 56, 535–565 (2013)

    Article  MathSciNet  Google Scholar 

  22. Greer, J.B.: An improvement of a recent Eulerian method for solving PDEs on general geometries. J. Sci. Comput. 29, 321–352 (2006)

    Article  MathSciNet  Google Scholar 

  23. Gu, X., Wang, Y., Chan, T., Thompson, P., Yau, S.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23, 949–958 (2004)

    Article  Google Scholar 

  24. Holmes, E.E., Lewis, M.A., Banks, J.E., Veit, R.R.: Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75(1), 17–29 (1994)

    Article  Google Scholar 

  25. Holst, M.: Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15, 139–191 (2001)

    Article  MathSciNet  Google Scholar 

  26. Larsson, E., Shcherbakov, V., Heryudono, A.: A least squares radial basis function partition of unity method for solving PDEs. SIAM J. Sci. Comput. 39(6), A2538–A2563 (2017)

    Article  MathSciNet  Google Scholar 

  27. Lehto, E., Shankar, V., Wright, G.B.: A radial basis function (RBF) compact finite difference (FD) scheme for reaction–diffusion equations on surfaces. SIAM J. Sci. Comput. 39(5), 2129–2151 (2017)

    Article  MathSciNet  Google Scholar 

  28. Macdonald, C.B., Ruuth, S.J.: The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput. 31, 4330–4350 (2009)

    Article  MathSciNet  Google Scholar 

  29. Martel, J.M., Platte, R.B.: Stability of radial basis function methods for convection problems on the circle and sphere. J. Sci. Comput. 69, 487–505 (2016)

    Article  MathSciNet  Google Scholar 

  30. https://web.maths.unsw.edu.au/~rsw/Sphere/Energy/index.html

  31. Mitchell, C.C., Shaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65, 767–793 (2003)

    Article  Google Scholar 

  32. Piret, C.: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces. J. Comput. Phys. 231, 4662–4675 (2012)

    Article  MathSciNet  Google Scholar 

  33. http://www.msri.org/publications/sgp/jim/geom/level/library/triper/index.html

  34. Sarra, S.A., Kansa, E.J.: Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Adv. Comput. Mech. 2 (2009)

  35. Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A study of different modeling choices for simulating platelets within the immersed boundary method. Appl. Numer. Math. 63, 58–77 (2013)

    Article  MathSciNet  Google Scholar 

  36. Shankar, V., Wright, G.B., Kirby, R.M., Fogelson, A.L.: A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction diffusion equations on surfaces. J. Sci. Comput. 63, 745–768 (2014)

    Article  MathSciNet  Google Scholar 

  37. Shankar, V., Narayanb, A., Kirby, R.M.: RBF-LOI: augmenting radial basis functions (RBFs) with least orthogonal interpolation (LOI) for solving PDEs on surfaces. J. Comput. Phys. 373, 722–735 (2018)

    Article  MathSciNet  Google Scholar 

  38. Shankar, V., Fogelson, A.L.: Hyperviscosity-based stabilization for radial basis function-finite difference (RBF-FD) discretizations of advection-diffusion equations. J. Comput. Phys. 372, 616–639 (2018)

    Article  MathSciNet  Google Scholar 

  39. Shankar, V., Kirby, R.M., Fogelson, A.L.: Robust node generation for mesh-free discretizations on irregular domains and surfaces. SIAM J. Sci. Comput. 40, 2584–2608 (2018)

    Article  MathSciNet  Google Scholar 

  40. Shubin, M.A.: Asymptotic Behaviour of the Spectral Function. Pseudodifferential Operators and Spectral Theory. Springer, Berlin, Heidelberg (2001)

    Book  Google Scholar 

  41. Turk, G.: Generating textures on arbitrary surfaces using reaction–diffusion. Comput. Graph. 25, 289–298 (1991)

    Article  Google Scholar 

  42. Turing, M.A.: The chemical basis of morhogenesis. Philos. Trans. R. Soc. B237, 37–72 (1952)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by Spanish MICINN Grant FIS2016-77892-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Álvarez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez, D., González-Rodríguez, P. & Kindelan, M. A Local Radial Basis Function Method for the Laplace–Beltrami Operator. J Sci Comput 86, 28 (2021). https://doi.org/10.1007/s10915-020-01399-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01399-3

Keywords

Mathematics Subject Classification

Navigation