Skip to main content
Log in

An Efficient Two-Layer Non-hydrostatic Approach for Dispersive Water Waves

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a two-layer depth-integrated non-hydrostatic system with improved dispersion relations. This improvement is obtained through three free parameters: two of them related to the representation of the pressure at the interface and a third one that controls the relative position of the interface concerning the total height. These parameters are then optimized to improve the dispersive properties of the resulting system. The optimized model shows good linear wave characteristics up to \(kH\approx 10\), that can be improved for long waves. The system is solved using an efficient formally second-order well-balanced and positive preserving hybrid finite volume/difference numerical scheme. The scheme consists of a two-step algorithm based on a projection-correction type scheme. First, the hyperbolic part of the system is discretized using a Polynomial Viscosity Matrix path-conservative finite-volume method. Second, the dispersive terms are solved using finite differences. The method has been applied to idealized and challenging physical situations that involve nearshore breaking. Agreement with laboratory data is excellent. This technique results in an accurate and efficient method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Abbott, M.B., McCowan, A.D., Warren, I.R.: Accuracy of short wave numerical models. J. Hydraul. Eng. 110(10), 1287–1301 (1984)

    Article  Google Scholar 

  2. Abgrall, R., Karni, S.: A comment on the computation of non-conservative products. J. Comput. Phys. 229, 2759–2763 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adsuara, J.E., Cordero-Carrión, I., Cerdá-Durán, P., Aloy, M.A.: Scheduled relaxation jacobi method: Improvements and applications. J. Comput. Phys. 321, 369–413 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ai, C., Jin, S.: A multi-layer non-hydrostatic model for wave breaking and run-up. Coast. Eng. 62, 1–8 (2012)

    Article  Google Scholar 

  5. Ai, C., Jin, S., Lv, B.: A new fully non-hydrostatic 3d free surface flow model for water wave motions. Int. J. Numer. Methods Fluids 66(11), 1354–1370 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aïssiouene, N., Bristeau, M.-O., Godlewski, E., Mangeney, A., Parés, C., Sainte-Marie, J.: Application of a combined finite element–finite volume method to a 2D non-hydrostatic shallow water problem. In: Cancés, C., Omnes, P. (eds.) Finite Volumes for Complex Applications VIII–Hyperbolic, Elliptic and Parabolic Problems, pp. 219–226. Springer, Cham (2017)

    Chapter  MATH  Google Scholar 

  7. Audusse, E., Bristeau, M.O., Perthame, B., Sainte-Marie, J.: A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM Math. Model. Numer. Anal. 45, 169–200 (2011). 01

    Article  MathSciNet  MATH  Google Scholar 

  8. Bai, Y., Cheung, K.F.: Depth-integrated free-surface flow with a two-layer non-hydrostatic formulation. Int. J. Numer. Methods Fluids 69(2), 411–429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bai, Y., Cheung, K.F.: Depth-integrated free-surface flow with parameterized non-hydrostatic pressure. Int. J. Numer. Methods Fluids 71(4), 403–421 (2012)

    Article  MathSciNet  Google Scholar 

  10. Bai, Y., Cheung, K.F.: Dispersion and kinematics of multi-layer non-hydrostatic models. Ocean Model. 92, 11–27 (2015)

    Article  Google Scholar 

  11. Bai, Y., Cheung, K.F.: Linear shoaling of free-surface waves in multi-layer non-hydrostatic models. Ocean Model. 121, 90–104 (2018)

    Article  Google Scholar 

  12. Beji, S., Battjes, J.A.: Experimental investigation of wave propagation over a bar. Coast. Eng. 19, 151–162 (1993)

    Article  Google Scholar 

  13. Berthon, C., Coquel, F., LeFloch, P.G.: Why many theories of shock waves are necessary: kinetic functions, equivalent equations, and fourth-order models. J. Comput. Phys. 227, 4162–4189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bonneton, P., Chazel, F., Lannes, D., Marche, F., Tissier, M.: A splitting approach for the fully nonlinear and weakly dispersive Green–Naghdi model. J. Comput. Phys. 230(4), 1479–1498 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long dun canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  16. Bristeau, M.-O., Mangeney, A., Sainte-Marie, J., Seguin, N.: An energy-consistent depth-averaged euler system: derivation and properties. Discrete Continuous Dyn. Syst. Ser. B 20(4), 961–988 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Castro, M.J., Fernández-Nieto, E.D.: A class of computationally fast first order finite volume solvers: PVM methods. SIAM J. Sci. Comput. 34(4), 173–196 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Castro, M.J., Ferreiro, A.M.F., García-Rodríguez, J.A., González-Vida, J.M., Macías, J., Parés, C., Vázquez-Cendón, M.E.: The numerical treatment of wet/dry fronts in shallow flows: application to one-layer and two-layer systems. Math. Comput. Model. 42(3), 419–439 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Castro, M.J., Gallardo, J.M., Parés, C.: High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow water systems. Math. Comput. 75, 1103–1134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Castro, M.J., Pardo, A., Parés, C., Toro, E.F.: On some fast well-balanced first order solvers for nonconservative systems. Math. Comput. 79(271), 1427–1472 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Castro, M.J., Morales de Luna, T., Parés, C.: Chapter 6-well-balanced schemes and path-conservative numerical methods. In: Abgrall, Rémi, Shu, C.-W. (eds.) Handbook of Numerical Methods for Hyperbolic Problems, volume 18 of Handbook of Numerical Analysis, pp 131–175. Elsevier, Amsterdam (2017)

    Google Scholar 

  22. Casulli, V.: A semi-implicit finite difference method for non-hydrostatic free surface flows. Numer. Methods Fluids 30(4), 425–440 (1999)

    Article  MATH  Google Scholar 

  23. Casulli, V., Zanolli, P.: Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems. Math. Comput. Model. 36(9), 1131–1149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cea, L., Stelling, G., Zijlema, M.: Non-hydrostatic 3D free surface layer-structured finite volume model for short wave propagation. Int. J. Numer. Methods Fluids 61(4), 382–410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chazel, F., Lannes, D., Marche, F.: Numerical simulation of strongly nonlinear and dispersive waves using a Green–Naghdi model. J. Sci. Comput. 48(1), 105–116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Clamond, D., Dutykh, D. https://es.mathworks.com/matlabcentral/fileexchange/39189-solitary-water-wave (2012)

  27. Cui, H., Pietrzak, J.D., Stelling, G.S.: Optimal dispersion with minimized poisson equations for non-hydrostatic free surface flows. Ocean Model. 81, 1–12 (2014)

    Article  Google Scholar 

  28. Dingemans, M.W.: Comparison of computations with Boussinesq-like models and laboratory measurements. Report H-1684.12, 32, Delft Hydraulics (1994)

  29. Duran, A., Marche, F.: A discontinuous galerkin method for a new class of Green–Naghdi equations on simplicial unstructured meshes. Appl. Math. Model. 45, 840–864 (2017)

    Article  MathSciNet  Google Scholar 

  30. Dutykh, D., Clamond, D.: Efficient computation of steady solitary gravity waves. Wave Motion 51(1), 86–99 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Enet, F., Grilli, S.T.: Experimental study of tsunami generation by three-dimensional rigid underwater landslides. J. Waterw. Port Coast. Ocean Eng. 133(6), 442–454 (2007)

    Article  Google Scholar 

  32. Escalante, C., Macías, J., Castro, M. J.: Performance assessment of tsunami–HySEA model for NTHMP tsunami currents benchmarking. Part I lab data. Coast. Eng. (2017)

  33. Escalante, C., Morales, T., Castro, M.J.: Non-hydrostatic pressure shallow flows: GPU implementation using finite volume and finite difference scheme. Appl. Math. Comput. 338, 631–659 (2018)

    MathSciNet  Google Scholar 

  34. Fernández-Nieto, E.D., Parisot, M., Penel, Y., Sainte-Marie, J.: Layer–averaged approximation of Euler equations for free surface flows with a non-hydrostatic pressure. Commun. Math. Sci. (hal-01324012v3) (2018)

  35. Fernández-Nieto, E.D., Koné, E.H., Chacón Rebollo, T.: A multilayer method for the hydrostatic Navier–Stokes equations: a particular weak solution. J. Sci. Comput. 60(2), 408–437 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fernández-Nieto, E.D., Koné, E.H., Rebollo, T.: Chacón: A multilayer method for the hydrostatic Navier-Stokes equations: a particular weak solution. J. Sci. Comput. 60, 408–437, 08 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gallerano, F., Cannata, G., Lasaponara, F., Petrelli, C.: A new three-dimensional finite-volume non-hydrostatic shock-capturing model for free surface flow. J. Hydrodyn. Ser. B 29(4), 552–566 (2017)

    Article  MATH  Google Scholar 

  38. Gobbi, M.F., Kirby, J.T., W, G.: A fully nonlinear boussinesq model for surface waves. Part 2. Extension to o(kh)4. J. Fluid Mech. 405, 181–210 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Green, A., Naghdi, P.: A derivation of equations for wave propagation in water of variable depth. Fluid Mech. 78, 237–246 (1976)

    Article  MATH  Google Scholar 

  41. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jeschke, A., Pedersen, G.K., Vater, S., Behrens, J.: Depth-averaged non-hydrostatic extension for shallow water equations with quadratic vertical pressure profile: equivalence to Boussinesq-type equations. Int. J. Numer. Methods Fluids 84(10), 569–583 (2017)

    Article  Google Scholar 

  43. Kazolea, M., Delis, A.I., Synolakis, C.E.: Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesq-type equations. J. Comput. Phys. 271, 281–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5(1), 133–160, 03 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lannes, D., Marche, F.: A new class of fully nonlinear and weakly dispersive Green–Naghdi models for efficient 2D simulations. J. Comput. Phys. 282, 238–268 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lynett, P., Liu, P.L.F.: A two-layer approach to wave modelling. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 460(2049), 2637–2669 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lynett, P.J., Liu, P.L.-F.: Linear analysis of the multi-layer model. Coast. Eng. 51, 439–454 (2004)

    Article  Google Scholar 

  48. Lynett, P.J., Wu, T.R., Liu, P.L.-F.: Modeling wave runup with depth-integrated equations. Coast. Eng. 46(2), 89–107 (2002)

    Article  Google Scholar 

  49. Lynett, P.J., Gately, K., Wilson, R., Montoya, L., Arcas, D., Aytore, B., Bai, Y., Bricker, J.D., Castro, M.J., Cheung, K.F., David, C.G., Dogan, G.G., Escalante, C., González-Vida, J.M., Grilli, S.T., Heitmann, T.W., Horrillo, J., Knolu, U., Kian, R., Kirby, J.T., Li, W., Macías, J., Nicolsky, D.J., Ortega, S., Pampell-Manis, A., Park, Y.S., Roeber, V., Sharghivand, N., Shelby, M., Shi, F., Tehranirad, B., Tolkova, E., Thio, H.K., Veliolu, D., Yalner, A.C., Yamazaki, Y., Zaytsev, A., Zhang, Y.J.: Inter-model analysis of tsunami-induced coastal currents. Ocean Model. 114, 14–32 (2017)

    Article  Google Scholar 

  50. Ma, G., Shi, F., Kirby, J.T.: Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model. 43, 22–35 (2012)

    Article  Google Scholar 

  51. Ma, G., Shi, F., Kirby, J.T.: Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model. 43–44, 22–35 (2012)

    Article  Google Scholar 

  52. Madsen, P.A., Sorensen, O.R.: A new form of the boussinesq equations with improved linear dispersion characteristics. Part 2: A slowing varying bathymetry. Coast. Eng. 18, 183–204, (1992)

    Article  Google Scholar 

  53. Madsen, P.A., Bingham, H.B., Schffer, H.A.: Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: Derivation and analysis. Proc. Math. Phys. Eng. Sci. 459(2033), 1075–1104 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Muoz-Ruiz, M.: On a non-homogeneous bi-layer shallow-water problem: smoothness and uniqueness results. Nonlinear Anal. Theory Methods Appl. 59, 11 (2004)

    MathSciNet  Google Scholar 

  55. Muoz-Ruiz, M.: On a nonhomogeneous bi-layer shallow-water problem: an existence theorem. Differ. Integral Equ. 17(9–10), 1175–1200 (2004)

    MathSciNet  MATH  Google Scholar 

  56. Muoz-Ruiz, M.L., Chatelon, F.J., Orenga, P.: On a bi-layer shallow-water problem. Nonlinear Anal. Real World Appl. 4, 139–171 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. Narbona-Reina, G., Zabsonré, J.D.D., Fernández-Nieto, E.D., Bresch, D.: Derivation of a bilayer model for shallow water equations with viscosity. Numerical validation. Comput. Model. Eng. Sci. 43(1), 27–71 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Nwogu, O.: An alternative form of the boussinesq equations for nearshore wave propagation. Waterw. Port Coast. Ocean Eng. 119, 618–638 (1994)

    Article  Google Scholar 

  59. Peregrine, D.H.: Long waves on a beach. Fluid Mech. 27(4), 815–827 (1967)

    Article  MATH  Google Scholar 

  60. Ricchiuto, M., Filippini, A.G.: Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries. J. Comput. Phys. 271, 306–341 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Roeber, V., Cheung, K.F., Kobayashi, M.H.: Shock-capturing Boussinesq-type model for nearshore wave processes. Coast. Eng. 57, 407–423 (2010)

    Article  Google Scholar 

  62. Schffer, H.A., Madsen, P.A.: Further enhancements of Boussinesq-type equations. Coast. Eng. 26(1), 1–14 (1995)

    Article  Google Scholar 

  63. Stansby, P.K., Zhou, J.G.: Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems. Int. J. Numer. Methods Fluids 28(3), 541–563 (1998)

    Article  MATH  Google Scholar 

  64. Stelling, G., Zijlema, M.: An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Methods Fluids 43(1), 1–23 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  65. Synolakis, C.E.: The runup of solitary waves. Fluid Mech. 185, 523–545 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  66. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method. Comput. Phys. 32, 101–136 (1979)

    Article  MATH  Google Scholar 

  67. Wei, G., Kirby, J.T., Grilli, S.T., Subramanya, R.: A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 294(–1), 71 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  68. Whitham, G.B., Wiley, : Linear and nonlinear waves. Earthq. Eng. Struct. Dyn. 4(5), 518–518 (1976)

    Google Scholar 

  69. Witting, J.M.: A unified model for the evolution nonlinear water waves. J. Comput. Phys. 56(2), 203–236 (1984)

    Article  MATH  Google Scholar 

  70. Wu, C.H., Young, C.-C., Chen, Q., Lynett, P.J.: Efficient nonhydrostatic modeling of surface waves from deep to shallow water. J. Waterw. Port Coast. Ocean Eng. 136(2), 104–118 (2010)

    Article  Google Scholar 

  71. Yamazaki, Y., Kowalik, Z., Cheung, K.F.: Depth-integrated, non-hydrostatic model for wave breaking and run-up. Numer. Methods Fluids 61, 473–497 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zijlema, M., Stelling, G.S.: Further experiences with computing non-hydrostatic free-surface flows involving water waves. Int. J. Numer. Methods Fluids 48(2), 169–197 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the Spanish Government and FEDER through Research Project MTM2015-70490-C2-1-R and MTM2015-70490-C2-2-R, and Andalusian Government Research Project P11-FQM-8179. Funding was provided by Ministerio de Economía y Competitividad and Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Escalante.

Appendices

A Hyperbolicity of the Underlying Hydrostatic System

1.1 A.1 Hyperbolicity

Let us consider the underlying hydrostatic system (20) written in quasi-linear form

$$\begin{aligned} \partial _t \varvec{U}+\mathcal {A}\partial _x \varvec{U} = \varvec{G}(\varvec{U})\partial _x H, \end{aligned}$$
(47)

where \(\mathcal {A} = \mathcal {J}_F + \varvec{B}\), being \(\mathcal {J}_F\) the Jacobian matrix of the flux \(\varvec{F}\). The characteristic polynomial of the matrix \(\mathcal {A}\) is given by

$$\begin{aligned} \mathcal {P} (\lambda ,l_1) = \displaystyle \frac{1}{2}\left( u_1 - \lambda \right) \left( u_2 - \lambda \right) \mathcal {Q}(\lambda ,l_1), \end{aligned}$$

being \(\mathcal {Q}(\lambda ,l_1)\) a third order polynomial on \(\lambda \) given by

$$\begin{aligned} \mathcal {Q}(\lambda ,l_1)= & {} f(\lambda ) - R(l_1),\\ f(\lambda )= & {} \left( 3u_1-u_2-2\lambda \right) \left( (u_2-\lambda )^2-gh\right) ,\\ R(l_1)= & {} l_1K,\\ K= & {} \left( u_1-u_2\right) \left( \left( u_1-u_2\right) ^2-4gh\right) . \end{aligned}$$

For the sake of simplicity on the notation, we do not write explicitly the dependence on \(\varvec{U}\). Let us study the hyperbolicity of the hydrostatic system. It is easily to check that

$$\begin{aligned} \lambda _1=u_1,\ \lambda _2 = u_2 \end{aligned}$$

are eigenvalues of the system for every \(l_1\in (0,1)\). It remains to check if the cubic polynomial \(\mathcal {Q}(\lambda )\) has three distinct roots.

We will prove that the cubic polynomial it has always three different roots for every \(l_1\in [0,1],\) and in particular for every \(l_1\in (0,1)\) as we just request. Let us give a sketch of the proof:

  1. 1.

    Let us remark that \(\mathcal {Q}\) is a cubic polynomial on \(\lambda \) satisfying

    $$\begin{aligned} \mathcal {Q}(-\infty ,l_1) = +\infty ,\ \mathcal {Q}(\infty ,l_1) = -\infty . \end{aligned}$$
  2. 2.

    Note that \(f(\lambda )\) is a cubic polynomial that does not depend on \(l_1\). Moreover, it has two local extrema given by the roots of \(f'(\lambda )\):

    $$\begin{aligned}\lambda ^\pm = \displaystyle \frac{u_1+u_2}{2} \pm \sqrt{\frac{1}{3} + \left( \displaystyle \frac{u_1-u_2}{2} \right) ^2}.\end{aligned}$$
  3. 3.

    A sufficient and necessary condition for the existence of three real and distinct roots of the cubic polynomial \(\mathcal {Q}(\lambda ,l_1)\) is that:

    $$\begin{aligned} f(\lambda ^-) < R(l_1) \text{ and } f(\lambda ^+) > R(l_1). \end{aligned}$$
  4. 4.

    Note that when \(l_1=0\), the polynomial \(\mathcal {Q}(\lambda ,0)\) has three roots:

    $$\begin{aligned} \lambda _3 = \displaystyle \frac{3u_1-u_2}{2},\ \lambda _{4,5} = u_2\pm \sqrt{gh}, \end{aligned}$$

    and thus \(f(\lambda ^ -) < R(0)\) and \(f(\lambda ^ +) > R(0)\). Similarly, when \(l_1=1\), the polynomial \(\mathcal {Q}(\lambda ,1)\) has three roots:

    $$\begin{aligned} \lambda _3 = \displaystyle \frac{-u_1+3u_2}{2},\ \lambda _{4,5} = u_1\pm \sqrt{gh}, \end{aligned}$$

    and therefore \(f(\lambda ^ -) < R(1)\) and \(f(\lambda ^ +) > R(1)\).

Thus, if we assume that \(K\ge 0,\) then \(R(1) \ge R(l_1) \ge R(0)\) and therefore

$$\begin{aligned} f(\lambda ^ +)> & {} R(1) \ge R(l_1) \\ f(\lambda ^ -)< & {} R(0) \le R(l_1). \end{aligned}$$

If we assume that \(K\le 0,\) then \(R(1) \le R(l_1) \le R(0)\) and therefore

$$\begin{aligned} f(\lambda ^ +)> & {} R(0) \ge R(l_1) \\ f(\lambda ^ -)< & {} R(1) \le R(l_1). \end{aligned}$$

This concludes the proof.

1.2 A.2 A First Order Approximation for the Eigenvalues

Let us denote the eigenvalues that depends on \(l_1\) as

$$\begin{aligned} \lambda _1(l_1)=u_1,\ \lambda _2(l_1)=u_2, \end{aligned}$$

as the known eigenvalues for any \(l_1\in (0,1)\), and

$$\begin{aligned} \lambda _3(l_1),\ \lambda _4(l_1),\ \lambda _5(l_1) \end{aligned}$$

as the eigenvalues that are roots of the cubic polynomial \(\mathcal {Q}(\lambda ,l_1)\). As a particular case, we have found an explicit form of the eigenvalues for \(l_1=1/2,\)

$$\begin{aligned} \lambda _1 = u_1,\ \lambda _2 = u_2,\ \lambda _3 = \displaystyle \frac{u_1+u_2}{2},\ \lambda _{4,5} = \displaystyle \frac{u_1+u_2}{2}\pm \sqrt{gh + \displaystyle \frac{3}{4}(u_1-u_2)^2}. \end{aligned}$$

Let us consider

$$\begin{aligned} \lambda (l_1)\in \{\lambda _3(l_1),\ \lambda _4(l_1),\ \lambda _5(l_1)\}, \end{aligned}$$

an eigenvalue that depends on \(l_1\) and is a root of the cubic polynomial \(\mathcal {Q}(\lambda ,l_1)\). We propose the following approximation of the eigenvalues, that gives the exact roots of the cubic polynomial \(\mathcal {Q}(\lambda , l_1)\) for \(l_1\in {\{0,1/2,1\}}\).

$$\begin{aligned} \lambda _3(l_1) \approx \widetilde{\lambda _3}(l_1)= & {} \left( \frac{3}{2} - 2l_1\right) u_1 + \left( 2l_1-\frac{1}{2}\right) u_2, \\ \lambda _{4,5}(l_1) \approx \widetilde{\lambda _{4,5}}(l_1)= & {} l_1u_1+l_2u_2 \pm \sqrt{gh + 3l_1l_2\left( u_1-u_2\right) ^2}. \end{aligned}$$

Another approximation for the eigenvalues is proposed in the following. Since \(\lambda (l_1)\) is a root of \(\mathcal {Q}(\lambda ,l_1),\) then

$$\begin{aligned} \mathcal {Q}(\lambda (l_1),l_1)=0, \end{aligned}$$

and deriving with respect to \(l_1\) it yields

$$\begin{aligned} \lambda '(l_1) = \displaystyle \frac{\left( \left( u_1 - u_2\right) ^2-4 g h\right) \left( u_1 - u_2\right) }{2 \left( g h - 3 u_1 u_2 + 3 \left( u_1 + u_2 - \lambda (l_1)\right) \lambda (l_1)\right) }. \end{aligned}$$

Thus, we propose to approximate the eigenvalues that are roots of \(\mathcal {Q}(\lambda ,l_1)\) with the first order approximation

$$\begin{aligned} \lambda _i(l_1) \approx \widetilde{\lambda _{i}} = \lambda _i(1/2) + \lambda _i'(1/2)(l_1-1/2), \ i\in \{3,4,5\}, \end{aligned}$$

that can be explicitly computed, since \(\lambda _i(1/2)\) are known:

$$\begin{aligned} \lambda _3(l_1) \approx \widetilde{\lambda _{3}}= & {} \displaystyle \frac{u_1+u_2}{2} + \left( u_1 - u_2\right) \left( 1-2 l_1 \right) \frac{g h-\frac{1}{4}\left( u_1 - u_2\right) ^2}{gh + \frac{3}{4}\left( u_1-u_2 \right) ^2} + \mathcal {O}(l_1^2),\\ \lambda _{4,5}(l_1) \approx \widetilde{\lambda _{4,5}}= & {} \displaystyle \frac{u_1+u_2}{2} \pm \sqrt{gh + \displaystyle \frac{3}{4}(u_1-u_2)^2}\nonumber \\&+ \left( u_1 - u_2\right) \left( l_1 -\frac{1}{2} \right) \frac{g h-\frac{1}{4}\left( u_1 - u_2\right) ^2}{gh + \frac{3}{4}\left( u_1-u_2 \right) ^2} + \mathcal {O}(l_1^2). \end{aligned}$$

This procedure is more rigorous and lead to a more sophisticated expressions of the approximated eigenvalues.

B Linear Dispersion Properties

1.1 B.1 Linear Dispersion Relation

Substituting (23) into (24) yields the linear dispersion relation:

$$\begin{aligned} \displaystyle \frac{C^2}{g H} = \frac{N_0 + N_1 \left( kH \right) ^2 }{D_0 + D_1 \left( kH \right) ^2 + D_2 \left( kH \right) ^4}, \end{aligned}$$
(48)

where

$$\begin{aligned} {\left\{ \begin{array}{ll} N_0 = 1,\quad N_1 = \displaystyle \frac{l_1 l_2 (-\gamma _1-\gamma _2+2 (\gamma _2-1) l_1+2)}{4 (\gamma _1+\gamma _2)}, \\ \\ D_0 = 1,\qquad D_1 = \displaystyle \frac{{\gamma 1}+ {\gamma 2}+2 ({\gamma 2}-2) l_1^2-2 l_1 ( {\gamma 1}+{\gamma 2}-2)}{4 ({\gamma 1}+ {\gamma 2})},\quad D_2 = \displaystyle \frac{l_1^2l_2^2 ({\gamma 1}- {\gamma 2})}{16 ({\gamma 1}+{\gamma 2})}. \end{array}\right. } \end{aligned}$$

C Breaking Waves Parameters

By taking into account the two vertical velocities equations in (45) and the incompressibility equations, which relates \(w_\alpha \) with \(u_\alpha \), lead us to write P in terms of the derivatives of U

$$\begin{aligned} A_{(xx)} \partial _{xx} \varvec{U} + A_{(xt)} \partial _{xt} \varvec{U} + A_{(x)} \partial _{x} \varvec{U} + A_{(t)} \partial _{t} \varvec{U} + A \varvec{U} + B = \begin{pmatrix} p_b-p_I \\ \\ \gamma _1 p_b + \gamma _2 p_I \end{pmatrix} +I_{(\varsigma )} \partial _x \varvec{U}, \end{aligned}$$

where

$$\begin{aligned} I_{(\varsigma )} = \begin{pmatrix} -\varsigma _1 l_1h&{} 0\\ \\ 0&{} -\varsigma _2 l_2h \end{pmatrix},\ A_{(\cdot )}\in \mathcal {M}_2(\mathbb {R}). \end{aligned}$$

We propose define \(\varsigma _\alpha \) such that

$$\begin{aligned} I_{(\varsigma )}:=Diag(A_{(x)}). \end{aligned}$$

We then proceed to compute \(A_{(x)}\). The two continuity equations can be written as

figure i

Neglecting mass transfer terms due to \(\varGamma _I\), the vertical equations can be written as

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _t \left( l_1h w_1 \right) + \partial _x \left( l_1hu_1w_1 \right) = p_b-p_I + \varsigma _1 l_1h \partial _x u_1, \\ \\ \partial _t \left( l_2h w_2 \right) + \partial _x \left( l_2hu_2w_2 \right) = \gamma _1 p_b+\gamma _2 p_I+ \varsigma _2 l_2h \partial _x u_2. \end{array}\right. } \end{aligned}$$
(50)

Then, retaining at the left hand side of Eq. (50) only the terms multiplied by \(\partial _x u_\alpha \) at the equation concerning to the layer \(\alpha \), leads to

$$\begin{aligned} I_{(\varsigma )} = \begin{pmatrix} l_1h\left( -\partial _t l_1h + w_1 - u_1 \partial _x \left( l_1h + H \right) \right) &{} 0 \\ \\ 0 &{} l_2h\left( -\partial _t l_2h + w_2 + u_2 \partial _x \left( z_I- l_2h \right) \right) \end{pmatrix}, \end{aligned}$$

Again, using that \(\varGamma _I=0\), \(I_{(\varsigma )}\) can be rewritten as

$$\begin{aligned} I_{(\varsigma )} = \begin{pmatrix} l_1h\left( -w_1 + 3 u_1 \partial _x H - 2 \partial _t H \right) &{} 0 \\ \\ 0 &{} l_2h\left( -w_2 - 2 \partial _t H - 3 u_2 \partial _x z_I \right) \end{pmatrix}, \end{aligned}$$

and finally we propose

$$\begin{aligned} {\left\{ \begin{array}{ll} \varsigma _1 = \left( w_1 - 3 u_1 \partial _x H + 2 \partial _t H \right) , \\ \\ \varsigma _2 = \left( w_2 + 3 u_2 \partial _x z_I+ 2 \partial _t H \right) . \end{array}\right. } \end{aligned}$$
(51)

D Coefficients and Matrices of the Linear System

1.1 D.1 Coefficients of the Poisson-Like Equations

The coefficients appearing in (37) and (38) are:

$$\begin{aligned}&\left\{ \begin{array}{l} a_1 = -(l_1h)^2,\\ \\ a_2 = -l_1^2h \partial _x h,\\ \\ a_3 = l_1h\partial _{xx} \left( l_1h+2l_2h-2\eta \right) + \partial _x \left( h_1+2l_2h-2\eta \right) ^2 + 4,\\ \\ a_4 = -(l_1h)^2,\\ \\ a_5 = -l_1h \partial _x \left( 3l_1h+4l_2h-4\eta \right) ,\\ \\ a_6 = -l_1h\partial _{xx} \left( l_1h+2l_2h-2\eta \right) - \partial _x \left( l_1h+2l_2h-2\eta \right) ^2 - 4, \end{array} \right. \end{aligned}$$
(52)
$$\begin{aligned}&\left\{ \begin{array}{l} b_1 = -(l_2h)^2\left( \gamma _1+2\displaystyle \frac{l_1}{l_2} \right) ,\\ \\ b_2 = l_2h \partial _x \left( (4-\gamma _1)l_2h-4\eta \right) ,\\ \\ b_3 = l_2h\partial _{xx}\left( 2l_1h+(2\gamma _1+3)l_2h-2(\gamma _1+2)\eta \right) + \gamma _1\partial _x \left( l_2h-2\eta \right) + 4\gamma _1,\\ \\ b_4 = -(l_2h)^2\left( \gamma _2+2\displaystyle \frac{l_1}{l_2} \right) ,\\ \\ b_5 = l_2h \partial _x \left( 4l_1h + (4-\gamma _2)l_2h - 4\eta \right) ,\\ \\ b_6 = l_2h\partial _{xx}\left( -2l_1h+(2\gamma _2-5)l_2h-2(\gamma _2-2)\eta \right) + \gamma _2\partial _x \left( l_2h-2\eta \right) + 4\gamma _2, \end{array} \right. \nonumber \\&RHS_1 = l_1h^{(\widetilde{k})} \partial _x q_{u,1}^{(\widetilde{k})} - 2 q_{u,1}^{(\widetilde{k})}\partial _x z_1^{(\widetilde{k})} + 2q_{w,1}^{(\widetilde{k})} + 2 h^{(\widetilde{k})} \partial _t H,\nonumber \\&RHS_2 = 2 l_1h^{(\widetilde{k})} \partial _x q_{u,1}^{(\widetilde{k})} + l_2h^{(\widetilde{k})} \partial _x q_{u,2}^{(\widetilde{k})} - 2 q_{u,2}^{(\widetilde{k})}\partial _x z_2^{(\widetilde{k})} + 2q_{w,2}^{(\widetilde{k})} + 2 h^{(\widetilde{k})} \partial _t H. \end{aligned}$$
(53)

1.2 D.2 Matrices of the Linear Systems

After replace (39) and (40) in (37) and (38), one has to solve a linear system

being \(T_{(j)}, C_{(j)}\) tridiagonal matrices of dimension \(N\times N\) given by:

$$\begin{aligned} T_{(1)}= & {} \displaystyle \frac{A_{(1)}}{\varDelta x^2} T_{(1,-2,1)} +\displaystyle \frac{A_{(2)}}{2\varDelta x} T_{(-1,0,1)} + A_{(3)}I,\\ C_{(1)}= & {} \displaystyle \frac{A_{(4)}}{\varDelta x^2} T_{(1,-2,1)} +\displaystyle \frac{A_{(5)}}{2\varDelta x} T_{(-1,0,1)} + A_{(6)}I,\\ T_{(2)}= & {} \displaystyle \frac{B_{(1)}}{\varDelta x^2} T_{(1,-2,1)} +\displaystyle \frac{B_{(2)}}{2\varDelta x} T_{(-1,0,1)} + B_{(3)}I,\\ C_{(2)}= & {} \displaystyle \frac{B_{(4)}}{\varDelta x^2} T_{(1,-2,1)} +\displaystyle \frac{B_{(5)}}{2\varDelta x} T_{(-1,0,1)} + B_{(6)}I, \end{aligned}$$

where

$$\begin{aligned} T_{(a,b,c)} = \begin{pmatrix} {b} &{} \quad {c} &{} \quad { } &{} \quad { } &{} \quad { 0 } \\ {a} &{} \quad {b} &{} \quad {c} &{} \quad { } &{} \quad { } \\ { } &{} \quad {\ddots } &{} \quad {\ddots } &{} \quad \ddots &{} \quad { } \\ { } &{} \quad { } &{} \quad a &{} \quad b &{} \quad {c}\\ { 0 } &{} \quad { } &{} \quad { } &{} \quad {a} &{} \quad {b}\\ \end{pmatrix}, \end{aligned}$$

gather the centred finite difference matrix of second (\(T_{(1,-\,2,1)}\)) and first (\(T_{(-1,0,1)}\)) order, and I the identity matrix of dimension \(2N\times 2N\).

The matrices \(A_{(j)}\) and \(B_{(j)},\ j\in {\{1,\ldots , 6\}}\) are diagonal matrices of dimension \(N\times N\)

$$\begin{aligned}A_{(j)} = \begin{pmatrix} {a_{j,1}} &{} \quad { } &{} \quad { } &{} \quad { } &{} \quad { 0 } \\ { } &{} \quad {a_{j,2}} &{} \quad { } &{} \quad { } &{} \quad { } \\ { } &{} \quad {} &{} \quad {\ddots } &{} \quad &{} { } \\ { } &{} \quad { } &{} \quad &{} \quad a_{j,N-1} &{} \quad {}\\ { 0 } &{} \quad { } &{} \quad { } &{} \quad {} &{} \quad {a_{j,N}}\\ \end{pmatrix},\ B_{(j)} = \begin{pmatrix} {b_{j,1}} &{} \quad { } &{} \quad { } &{} \quad { } &{} \quad { 0 } \\ { } &{} \quad {b_{j,2}} &{} \quad { } &{} \quad { } &{} \quad { } \\ { } &{} \quad {} &{} \quad {\ddots } &{} \quad &{} \quad { } \\ { } &{} \quad { } &{} \quad &{} \quad b_{j,N-1} &{} \quad {}\\ { 0 } &{} \quad { } &{} \quad { } &{} \quad {} &{} \quad {b_{j,N}}\\ \end{pmatrix}, \end{aligned}$$

where the coefficients \(a_{j,i}\) (and \(b_{j,i}\) ) are the point value approximations of \(a_j\) (and \(b_j\)) described in Appendix D.2. For example,

$$\begin{aligned} a_{3,i}= & {} h_{1,i}\displaystyle \frac{2H_{i-1}-h_{1,i-1} -2\left( 2H_{i}-h_{1,i} \right) + 2H_{i+1}-h_{1,i+1}}{\varDelta x^2}\\&+ \,\displaystyle \frac{2H_{i+1}-h_{1,i+1} - \left( 2H_{i-1}-h_{1,i-1} \right) }{2\varDelta x} + 4. \end{aligned}$$

1.3 D.3 Analysis of the Linear System for Small Water Heights

If we assume

$$\begin{aligned} h=\epsilon ,\ u_\alpha =w_\alpha =0, \end{aligned}$$

then the coefficients (52) and (53) reduce to

$$\begin{aligned} \left\{ \begin{array}{l} a_1 = -l_1^2\epsilon ^2,\\ \\ a_2 = 0,\\ \\ a_3 = 4(1+(\partial _x H)^2) + 2l_1\epsilon \partial _{xx} H,\\ \\ a_4 = -l_1^2\epsilon ^2,\\ \\ a_5 = -4l_1\epsilon \partial _x H,\\ \\ a_6 = -4(1+(\partial _x H)^2)-2l_1\epsilon \partial _{xx} H, \end{array} \right. \qquad \left\{ \begin{array}{l} b_1 = -l_2((\gamma _1-2)l_2+2)\epsilon ^2,\\ \\ b_2 = 4l_2\epsilon \partial _x H,\\ \\ b_3 = 4\gamma _1(1+(\partial _x H)^2) + 2l_2(\gamma _1+2)\epsilon \partial _{xx}H,\\ \\ b_4 = -l_2((\gamma _2-2)l_2+2)\epsilon ^2,\\ \\ b_5 = -4l_2\epsilon \partial _x H,\\ \\ b_6 = 4\gamma _2(1+(\partial _x H)^2) + 2l_2(\gamma _2-2)\epsilon \partial _{xx} H, \end{array} \right. \end{aligned}$$

and the Right Hand Side vectors reduce to

$$\begin{aligned} \varvec{\mathcal {RHS}} = \begin{pmatrix}\varvec{\mathcal {RHS}}_1 \\ \\ \varvec{\mathcal {RHS}}_2 \end{pmatrix}=\begin{pmatrix}\varvec{0} \\ \\ \varvec{0} \end{pmatrix}. \end{aligned}$$

In the following analysis we will assume:

$$\begin{aligned} \epsilon ^2\approx 0,\ \epsilon \partial _x H \approx 0,\ \epsilon \partial _{xx} H\approx 0, \end{aligned}$$
(54)

and for the sake of simplicity we assume that \(\partial _x H = m\). Then the linear system becomes

The matrix \(\varvec{A}\) is invertible

since we assume in Remark 4 that \(\gamma _1+\gamma _2\ne 0\).

We note that (54) collects the particular case of a slowly varying bathymetry \(\partial _x H \approx 0,\) and in particular the case under study in this work, when \(\partial _x H = m\) with \(\epsilon \cdot m\approx 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escalante, C., Fernández-Nieto, E.D., Morales de Luna, T. et al. An Efficient Two-Layer Non-hydrostatic Approach for Dispersive Water Waves. J Sci Comput 79, 273–320 (2019). https://doi.org/10.1007/s10915-018-0849-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0849-9

Keywords

Navigation