Skip to main content
Log in

Free-Stream Preservation for Curved Geometrically Non-conforming Discontinuous Galerkin Spectral Elements

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The under integration of the volume terms in the discontinuous Galerkin spectral element approximation introduces errors at non-conforming element faces that do not cancel and lead to free-stream preservation errors. We derive volume and face conditions on the geometry under which a constant state is preserved. From those, we catalog eight constraints on the geometry that preserve a constant state. Numerical examples are presented to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://github.com/fhindenlang/hopr , https://www.hopr-project.org.

References

  1. Allaneau, Y., Jameson, A.: Connections between the filtered discontinuous Galerkin method and the flux reconstruction approach to high order discretizations. Comput. Methods Appl. Mech. Eng. 200(49–52), 3628–3636 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bjontegaard, T., Ronquist, E.M., Trasdahl, O.: Spectral approximation of partial differential equations in highly distorted domains. J. Sci. Comput. 52(3), 603–618 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bui-Tanh, T., Ghattas, O.: Analysis of an \(hp\)-nonconforming discontinuous Galerkin spectral element method for wave propagation. SIAM J. Numer. Anal. 50(3), 1801–1826 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  5. Del Rey Fernandez, D.C., Gassner, G.J., Parsani, M., Carpenter, M.H., Friedrich, L., Winters, A.R.: An entropy stable h/p non-conforming discontinuous Galerkin method with the summation-by-parts property. J. Sci. Comput. 77(2), 689–725 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fortunato, M., Persson, P.-O.: High-order unstructured curved mesh generation using the Winslow equations. J. Comput. Phys. 307, 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gassner, G.J., Winters, A.R., Hindenlang, F.J., Kopriva, D.A.: The BR1 scheme is stable for the compressible Navier-Stokes equations. J. Sci. Comput. 77(1), 154–200 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gordon, W.J., Hall, C.A.: Construction of curvilinear co-ordinate systems and their applications to mesh generation. Int. J. Numer. Methods Eng. 7, 461–477 (1973)

    Article  MATH  Google Scholar 

  10. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  11. Hindenlang, F., Bolemann, T., Munz, C-D.: Mesh curving techniques for high order discontinuous Galerkin simulations. In: IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach, pp. 133–152. Springer, Berlin (2015)

  12. Hindenlang, F.: Mesh Curving Techniques for High Order Parallel Simulations on Unstructured Meshes. Ph.D. thesis, University of Stuttgart (2014)

  13. Johnen, A., Remacle, J.-F., Geuzaine, C.: Geometrical validity of high-order triangular finite elements. Eng. Comput. 30(3), 375–382 (2014)

    Article  Google Scholar 

  14. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  15. Kopera, M.A., Giraldo, F.X.: Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible euler equations with application to atmospheric simulations. J. Comput. Phys. 275, 92–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kopriva, D.A.: A conservative staggered-grid Chebyshev multidomain method for compressible flows II. A semi-structured method. J. Comput. Phys. 128(2), 475–488 (1996)

    Article  MATH  Google Scholar 

  17. Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26(3), 301–327 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kopriva, D.A., Gassner, G.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44(2), 136–155 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kopriva, D.A., Woodruff, S.L., Hussaini, M.Y.: Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. Int. J. Numer. Methods Eng. 53(1), 105–122 (2002)

    Article  MATH  Google Scholar 

  20. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations. Scientific Computation. Springer, Berlin (2009)

  21. Kopriva, D.A.: A polynomial spectral calculus for analysis of DG spectral element methods. In: Hesthaven, J., Bittencourt, M., Dumont, N. (eds.) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, vol 119, pp. 21–40. Springer, Cham (2017)

  22. Kopriva, D.A.: Stability of overintegration methods for nodal discontinuous Galerkin spectral element methods. J. Sci. Comput. 76(1), 426–442 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kopriva, D.A., Gassner, G.J.: Geometry effects in nodal discontinuous Galerkin methods on curved elements that are provably stable. Appl. Math. Comput. 272, 2:274–290 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Korczak, K.Z., Patera, A.T.: An isoparametric spectral element method for solution of the Navier–Stokes equations in complex-geometry. J. Comput. Phys. 62(2), 361–382 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kovalev, K.: Unstructured Hexahedral Non-conformal Mesh Generation. Ph.D. thesis, Faculty of Engineering Vrije Universiteit Brussel Belgium (2005)

  26. Kozdon, J.E., Wilcox, L.C.: An energy stable approach for discretizing hyperbolic equations with nonconforming discontinuous Galerkin methods. J. Sci. Comput. 76(3), 1742–1784 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lovgren, A.E., Maday, Y., Ronquist, E.M.: Global \(c^1\) maps on general domains. Math. Models Methods Appl. Sci. 19(5), 803–832 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mengaldo, G., De Grazia, D., Vincent, P.E., Sherwin, S.J.: On the connections between discontinuous Galerkin and flux reconstruction schemes: extension to curvilinear meshes. J. Sci. Comput. 67(3), 1272–1292 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mengaldo, G., De Grazia, D., Moxey, D., Vincent, P.E., Sherwin, S.J.: Dealiasing techniques for high-order spectral element methods on regular and irregular grids. J. Comput. Phys. 299, 56–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moxey, D., Hazan, M., Sherwin, S.J., Peiro, J.: Curvilinear mesh generation for boundary layer problems. In: Norbert, K., Charles, H., Francesco, B., Craig, J., Koen, H. (eds.) IDIHOM: Industrialization of High-Order Methods—A Top-Down Approach, volume 128 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 41–64. Springer, Berlin (2015)

  31. Nelson, D. A.W.: High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods. Ph.D. thesis, University of California at San Diego (2015)

  32. Nonomura, T., Iizuka, N., Fujii, K.: Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids. Comput. Fluids 39(2), 197–214 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Patera, A.T.: A spectral element method for fluid dynamics—laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)

    Article  MATH  Google Scholar 

  34. Persson, P.-O., Bonet, J., Peraire, J.: Discontinuous Galerkin solution of the Navier–Stokes equations on deformable domains. Comput. Methods Appl. Mech. Eng. 198(17–20), 1585–1595 (2009)

    Article  MATH  Google Scholar 

  35. Persson, P.-O., Peraire, J.: Curved mesh generation and mesh refinement using lagrangian solid mechanics. (Preprint) (2009)

  36. Staten, M.L., Shepherd, J.F., Ledoux, F., Shimada, K.: Hexahedral mesh matching: converting non-conforming hexahedral-to-hexahedral interfaces into conforming interfaces. Int. J. Numer. Methods Eng. 82(12), 1475–1509 (2010)

    MATH  Google Scholar 

  37. Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17(10), 1030–1037 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Visbal, M.R., Gaitonde, D.V.: High-order accurate methods for complex unsteady subsonic flows. AIAA J. 37(10), 1231–1239 (1999)

    Article  Google Scholar 

  39. Visbal, M.R., Gaitonde, D.V.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Winters, A.R., Gassner, G.J., Zingg, D.W., Friedrichs, L., Fernández, D.C.D.R., Hicken, J.: Conservative and stable degree preserving SBP operators for non-conforming meshes. J. Sci. Comput. 75(2), 657–686 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xie, Z.Q., Sevilla, R., Hassan, O., Morgan, K.: The generation of arbitrary order curved meshes for 3d finite element analysis. Comput. Mech. 51(3), 361–374 (2013)

    Article  MathSciNet  Google Scholar 

  42. Zhang, B., Liang, C.: A simple, efficient, and high-order accurate curved sliding-mesh interface approach to spectral difference method on coupled rotating and stationary domains. J. Comput. Phys. 295, 147–160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Simons Foundation (#426393, David Kopriva). G.G and T.B. have been supported by the European Research Council (ERC) under the European Union’s Eights Framework Program Horizon 2020 with the research project Extreme, ERC grant agreement no. 714487. DAK would like to thank Mr. Andres Rueda for his helpful comments during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Kopriva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For ensuring the watertight condition, we require the geometry interpolants of the large face and the child faces, shown in Fig. 8, to match. The interpolation of the interpolant from the large face to the child faces is exact. The interpolation of the product of two interpolants is not. For completeness, we present a proof here, though only for edges in a two dimensional mesh. The proof for two dimensional faces in a three dimensional mesh will follow the same approach due to the tensor product approximation.

Fig. 8
figure 8

Subdivision of interpolants. The polynomials \(U^{L}\) and \(U^{R}\) will be constructed to match U on their respective intervals

Define the polynomial of degree N over the interval \([-1,1]\) to be

$$\begin{aligned} U\left( s \right) = \sum \limits _{j = 0}^N {{U_j}{\ell _j}\left( s \right) }. \quad s \in [-1,1] \end{aligned}$$
(49)

Next subdivide the interval into two pieces \(\xi \in [-1,1]\) and \(\eta \in [-1,1]\) and two mappings

$$\begin{aligned} s = \left\{ \begin{aligned} \frac{\xi -1 }{2}\quad \xi \in [-1,1] \\ \frac{\eta +1}{2}\quad \eta \in [-1,1]. \\ \end{aligned} \right. \end{aligned}$$
(50)

Define the two polynomials that take on the values of U at the interpolation points on the left and right intervals, i.e

$$\begin{aligned} {U_{L}}\left( \xi \right) = \sum \limits _{n = 0}^N {U\left( {\frac{{{\xi _n-1}}}{2}} \right) {\ell _n}\left( \xi \right) } , \quad {U_{R}}\left( \eta \right) = \sum \limits _{n = 0}^N {U\left( {\frac{{{\eta _n+1}}}{2}} \right) {\ell _n}\left( \eta \right) }. \end{aligned}$$
(51)

Now we assume that we have two polynomials that match on the short and the long intervals. That is,

$$\begin{aligned} U\left( s \right) = \sum \limits _{j = 0}^N {{U_j}{\ell _j}\left( s \right) } \quad U \ne 0, \quad V\left( s \right) = \sum \limits _{j = 0}^N {{V_j}{\ell _j}\left( s \right) } \quad V \ne 0. \end{aligned}$$
(52)

We then project the product of the two onto the polynomial space

$$\begin{aligned} W(s) = {{\mathbb {I}}^N}\left( {UV} \right) = \sum \limits _{j = 0}^N {{U_j}{V_j}{\ell _j}\left( s \right) }, \end{aligned}$$
(53)

and break the interval into two, as in (51), and define interpolants on each half

$$\begin{aligned} {W_L}\left( \xi \right)= & {} {\mathbb {I}}_L^N\left( {UV} \right) = \sum \limits _{j = 0}^N {U\left( {\frac{{{\xi _j} - 1}}{2}} \right) V\left( {\frac{{{\xi _j} - 1}}{2}} \right) {\ell _j}\left( \xi \right) } \nonumber \\ {W_R}\left( \xi \right)= & {} {\mathbb {I}}_R^N\left( {UV} \right) = \sum \limits _{j = 0}^N {U\left( {\frac{{{\eta _j} + 1}}{2}} \right) V\left( {\frac{{{h_j} + 1}}{2}} \right) {\ell _j}\left( \eta \right) } . \end{aligned}$$
(54)

Then we prove that

$$\begin{aligned} W\left( {\frac{{\xi - 1}}{2}} \right) \ne {W_L}\left( \xi \right) ,\quad W\left( {\frac{{\eta + 1}}{2}} \right) \ne {W_R}\left( \eta \right) , \end{aligned}$$
(55)

that is, the interpolation of the product onto the polynomials of degree N on each half does not equal the interpolant of the product over the whole interval.

To prove this, we examine the error of the interpolants. We know from basic numerical analysis that

$$\begin{aligned} E(s) = UV - W(s) = \frac{1}{{\left( {N + 1} \right) !}}\frac{{{\partial ^{N + 1}}\left( {UV} \right) }}{{\partial {s^{N + 1}}}}\prod \limits _{i = 0}^N {\left( {s - {s_i}} \right) } \end{aligned}$$
(56)

and that \(E(s)=0\) at precisely the \(N+1\) interpolation points, \(s_{i},\; i=0,1,\ldots ,N\). Similarly for the interpolant on the left,

$$\begin{aligned} {E_L}(\xi ) = U\left( {\frac{{\xi - 1}}{2}} \right) V\left( {\frac{{\xi - 1}}{2}} \right) - {W_L}(\xi ) = \frac{1}{{\left( {N + 1} \right) !}}\frac{{{\partial ^{N + 1}}\left( {UV} \right) }}{{\partial {\xi ^{N + 1}}}}\prod \limits _{i = 0}^N {\left( {\xi - {\xi _i}} \right) }.\qquad \end{aligned}$$
(57)

That interpolant vanishes at precisely \(N+1\) points \(\xi _{i}\) and nowhere else unless the derivative of the product vanishes.

The Gauss and Gauss–Lobatto points are symmetric and distinct about the middle of the interval and so there are twice as many (distinct) points \(\xi _{i}\) on the interval \(s\in [-1,0]\) as there are nodes \(s_{i}\). Therefore, there exist nodes \(\xi _{i}\) that are not equal to any node \(s_{i}\). Let us choose, then, one such \(\xi _{i}\) such that \(s=(\xi _{i}-1)/2\) is not a node of the interpolation on s. Then \(E_{L}\left( \xi _{i}\right) =0\), i.e., \(U\left( (\xi _{i}-1)/2\right) V\left( (\xi _{i}-1)/2\right) =W_{L}\left( \xi _{i}\right) \), but \(E\left( (\xi _{i}-1)/2\right) \ne 0\) so that \(U\left( (\xi _{i}-1)/2\right) V\left( (\xi _{i}-1)/2\right) \ne W\left( (\xi _{i}-1)/2\right) \) and the result follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopriva, D.A., Hindenlang, F.J., Bolemann, T. et al. Free-Stream Preservation for Curved Geometrically Non-conforming Discontinuous Galerkin Spectral Elements. J Sci Comput 79, 1389–1408 (2019). https://doi.org/10.1007/s10915-018-00897-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-00897-9

Keywords

Navigation