Skip to main content
Log in

Insights on Aliasing Driven Instabilities for Advection Equations with Application to Gauss–Lobatto Discontinuous Galerkin Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We analyse instabilities due to aliasing errors when solving one dimensional non-constant advection speed equations and discuss means to alleviate these types of errors when using high order discontinuous Galerkin (DG) schemes. First, we compare analytical bounds for the continuous and discrete version of the PDEs. Whilst traditional \(L^2\) norm energy bounds applied to the discrete PDE do not always predict the physical behaviour of the continuous version of the equation, more strict elliptic norm bounds correctly bound the behaviour of the continuous PDE. Having derived consistent bounds, we analyse the effectiveness of two stabilising techniques: over-integration and split form variations (conservative, non-conservative and skew-symmetric). Whilst the former is shown to not alleviate aliasing in general, the latter ensures an aliasing-free solution if the splitting form of the discrete PDE is consistent with the continuous equation. The success of the split form de-aliasing is restricted to DG schemes with the summation-by-parts simultaneous-approximation-term properties (e.g. DG with Gauss–Lobatto points). Numerical experiments are included to illustrate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H.T., Kroll, N., May, G., Persson, P.O., van Leer, B., Visbal, M.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bassi, F., Crivellini, A., Pietro, D.D., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 218(2), 794–815 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ferrer, E., Willden, R.H.J.: A high order discontinuous Galerkin finite element solver for the incompressible Navier–Stokes equations. Comput. Fluids 46(1), 224–230 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ferrer, E., Willden, R.H.J.: A high order discontinuous Galerkin–Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes. J. Comput. Phys. 231(21), 7037–7056 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier–Stokes equations. J. Comput. Phys. 222(1), 391–407 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor Comput Fluid Dyn 27(3–4), 221–237 (2013). doi:10.1007/s00162-011-0253-7

    Article  Google Scholar 

  8. Kompenhans, M., Rubio, G., Ferrer, E., Valero, E.: Adaptation strategies for high order discontinuous Galerkin methods based on tau-estimation. J. Comput. Phys. 306, 216–236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kompenhans, M., Rubio, G., Ferrer, E., Valero, E.: Comparisons of p-adaptation strategies based on truncation—and discretisation—errors for high order discontinuous Galerkin methods. Comput. Fluids 139, 36–46 (2016). 13th USNCCM International Symposium of High-Order Methods for Computational Fluid Dynamics—A Special Issue Dedicated to the 60th Birthday of Professor David Kopriva

  10. Kirby, R.M., Sherwin, S.J.: Aliasing errors due to quadratic nonlinearities on triangular spectral/hp element discretisations. J. Eng. Math. 56(3), 273–288 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Spiegel, S.C., Huynh, H.T., DeBonis, J.R.: De-aliasing through over-integration applied to the flux reconstruction and discontinuous Galerkin methods. In: 22nd AIAA Computational Fluid Dynamics Conference, AIAA Aviation (AIAA 2015-2744)

  12. Zang, T.A.: On the rotation and skew-symmetric forms for incompressible flow simulations. Appl. Numer. Math. 7(1), 27–40 (1991)

    Article  MATH  Google Scholar 

  13. Ferrer, E.: An interior penalty stabilised incompressible discontinuous Galerkin–Fourier solver for implicit large eddy simulations. J. Comput. Phys. 348, 754–775 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guermond, J.L., Popov, B.: Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 74(2), 284–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, New York (2009)

    Book  MATH  Google Scholar 

  16. Karamanos, G.S., Karniadakis, G.E.: A spectral vanishing viscosity method for large-eddy simulations. J. Comput. Phys. 163(1), 22–50 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268(1), 1738 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), 1233–1256 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kopriva, D.A., Gassner, G.J.: An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems. SIAM J. Sci. Comput. 36(4), A2076–A2099 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kopriva, D.A., Winters, A.R., Bohm, M., Gassner, G.J.: A provably stable discontinuous Galerkin spectral element approximation for moving hexahedral meshes. Comput. Fluids 000, 1–13 (2016)

    MathSciNet  Google Scholar 

  23. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Winters, A.R., Gassner, G.J.: Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations. J. Comput. Phys. 304, 72–108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gassner, G.J., Winters, A.R., Hindenlang, F.J., Kopriva, D.A.: The BR1 scheme is stable for the compressible Navier–Stokes equations. arXiv preprint arXiv:1704.03646 (2017)

  26. Fornberg, B.: On a Fourier method for the integration of hyperbolic equations. SIAM J. Numer. Anal. 12(4), 509–528 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128(1), 83–131 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lorenz, J., Kreiss, H.O.: Initial-Boundary Value Problems and the Navier–Stokes Equations, Pure and Applied Mathematics, vol. 136. Academic Press, San Diego (1989)

    MATH  Google Scholar 

  29. Manzanero, J., Rubio, G., Ferrer, E., Valero, E.: Dispersion-dissipation analysis for advection problems with non-constant coefficients: application to discontinuous Galerkin formulations. SIAM J. Sci. Comput. (2017) (under review)

  30. Gassner, G.J.: A kinetic energy preserving nodal discontinuous Galerkin spectral element method. Int. J. Numer. Meth. Fluids 00, 1–27 (2013)

    Google Scholar 

  31. Teukolsky, S.A.: Short note on the mass matrix for Gauss–Lobatto grid points. J. Comput. Phys. 283, 408–413 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains (Scientific Computation), 1st edn (2006). Correction 4th printing 2010 edn. Scientific Computation. Springer (2011)

  33. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations. Springer, Netherlands (2009)

    Book  MATH  Google Scholar 

  34. Kirby, R.M., Karniadakis, G.E.: De-aliasing on non-uniform grids: algorithms and applications. J. Comput. Phys. 191(1), 249–264 (2003)

    Article  MATH  Google Scholar 

  35. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2008)

    Book  MATH  Google Scholar 

  36. Moura, R.C., Sherwin, S.J., Peiro, J.: Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. J. Comput. Phys. 298, 695–710 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kirby, R.M., Sherwin, S.J.: Stabilisation of spectral/hp element methods through spectral vanishing viscosity: application to fluid mechanics modelling. Comput. Methods Appl. Mech. Eng. 195(23–24), 3128–3144 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the European Commission for the financial support received through the project SSEMID: Stability and Sensitivity Methods for Industrial Design, under grant contract PITN-GA-675008. The authors acknowledge the computer resources and technical assistance provided by the Centro de Supercomputación y Visualización de Madrid (CeSViMa). This work was supported by a grant from the Simons Foundation (# 426393, David A. Kopriva).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manzanero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzanero, J., Rubio, G., Ferrer, E. et al. Insights on Aliasing Driven Instabilities for Advection Equations with Application to Gauss–Lobatto Discontinuous Galerkin Methods. J Sci Comput 75, 1262–1281 (2018). https://doi.org/10.1007/s10915-017-0585-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0585-6

Keywords

Navigation