Skip to main content
Log in

On the Numerical Controllability of the Two-Dimensional Heat, Stokes and Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The aim of this work is to present some strategies to solve numerically controllability problems for the two-dimensional heat equation, the Stokes equations and the Navier–Stokes equations with Dirichlet boundary conditions. The main idea is to adapt the Fursikov–Imanuvilov formulation, see Fursikov and Imanuvilov (Controllability of Evolutions Equations, Lectures Notes Series, vol 34, Seoul National University, 1996); this approach has been followed recently for the one-dimensional heat equation by the first two authors. More precisely, we minimize over the class of admissible null controls a functional that involves weighted integrals of the state and the control, with weights that blow up near the final time. The associated optimality conditions can be viewed as a differential system in the three variables \(x_1\), \(x_2\) and t that is second-order in time and fourth-order in space, completed with appropriate boundary conditions. We present several mixed formulations of the problems and, then, associated mixed finite element Lagrangian approximations that are relatively easy to handle. Finally, we exhibit some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Belgacem, F.B., Kaber, S.: On the Dirichlet boundary controllability of the one-dimensional heat equation: semi-analytical calculations and ill-posedness degree. Inverse Probl. 27, 055012 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyer, F.: On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems. In: CANUM 2012, Super-Besse, ESAIM Proceedings, EDP Sciences, Les Ulis (2013)

  3. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991)

  4. Carthel, C., Glowinski, R., Lions, J.-L.: On exact and approximate boundary controllability for the heat equation: a numerical approach. J. Optim. Theory Appl. 82(3), 429–484 (1994)

    Article  MATH  Google Scholar 

  5. Ciarlet, P.G.: The finite element method for elliptic problems, vol. 40 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]

  6. Ciarlet, P.G., Lions, J.L. (eds.): Handbook of Numerical Analysis, vol. IX. North-Holland, Amsterdam (2003). Numerical methods for fluids. Part 3

    Google Scholar 

  7. Cîndea, N., Münch, A.: Inverse problems for linear hyperbolic equations using mixed formulations. Inverse Probl. 31, 075001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cîndea, N., Fernández-Cara, E., Münch, A.: Numerical controllability of the wave equation through primal methods and Carleman estimates. ESAIM Control Optim. Calc. Var. 19, 1076–1108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ervedoza, S., Valein, J.: On the observability of abstract time-discrete linear parabolic equations. Rev. Mat. Complut. 23(1), 163–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernández-Cara, E., Guerrero, S., Imanuvilov, O.Y., Puel, J.-P.: Local exact controllability of the Navier–Stokes system. J. Math. Pures Appl. 83, 1501–1542 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fernández-Cara, E., Münch, A.: Numerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methods. Math. Control Relat. Fields 2, 217–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fernández-Cara, E., Münch, A.: Strong convergence approximations of null controls for the 1D heat equation. SEMA J. 61, 49–78 (2013)

    Article  MATH  Google Scholar 

  13. Fernández-Cara, E., Münch, A.: Numerical exact controllability of the 1D heat equation: duality and Carleman weights. J. Optim. Theory Appl. 163, 253–285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fursikov, A.V., Imanuvilov, O.Y.: Controllability of evolution equations, vol. 34 of Lecture Notes Series, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul (1996)

  15. Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. IX, pp. 3–1176. North-Holland, Amsterdam (2003)

  16. González-Burgos, M., Guerrero, S., Puel, J.-P.: Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Commun. Pure Appl. Anal. 8, 311–333 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Gunzburger, M.D.: Perspectives in flow control and optimization, vol. 5 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2003)

  18. Hecht, F.: New development in freefem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Imanuvilov, O.Y.: Remarks on exact controllability for the Navier–Stokes equations. ESAIM Control Optim. Calc. Var. 6, 39–72 (2001). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  20. Imanuvilov, O.Y., Puel, J.-P., Yamamoto, M.: Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. Chin. Ann. Math. Ser. B 30(3), 333–378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Labbé, S., Trélat, E.: Uniform controllability of semi-discrete approximations of parabolic control systems. Syst. Control Lett. 55, 597–609 (2006)

    Article  MATH  Google Scholar 

  22. Münch, A.: A least-squares formulation for the approximation of controls for the Stokes system. Math. Control Signals Syst. 27, 49–75 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Münch, A., Pedregal, P.: Numerical null controllability of the heat equation through a least squares and variational approach. Eur. J. Appl. Math. 25, 277–306 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Münch, A., Souza, D.A.: A mixed formulation for the direct approximation of \(L^2\)-weighted controls for the linear heat equation. Adv. Comput. Math. 42, 85–125 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Queck, W.: The convergence factor of preconditioned algorithms of the Arrow-Hurwicz type. SIAM J. Numer. Anal. 26, 1016–1030 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Raymond, J.-P.: Stokes and Navier–Stokes equations with a nonhomogeneous divergence condition. Discrete Contin. Dyn. Syst. Ser. B 14, 1537–1564 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Roberts, J.E., Thomas, J.-M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 523–639. North-Holland, Amsterdam (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Fernández-Cara.

Additional information

Enrique Fernández-Cara and Diego A. Souza partially supported by Grant MTM2013–41286–P (Spain).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Cara, E., Münch, A. & Souza, D.A. On the Numerical Controllability of the Two-Dimensional Heat, Stokes and Navier–Stokes Equations. J Sci Comput 70, 819–858 (2017). https://doi.org/10.1007/s10915-016-0266-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0266-x

Keywords

Navigation