Skip to main content
Log in

Error Estimates of Mixed Finite Element Methods for Time-Fractional Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper studies the Galerkin finite element approximation of time-fractional Navier–Stokes equations. The discretization in space is done by the mixed finite element method. The time Caputo-fractional derivative is discretized by a finite difference method. The stability and convergence properties related to the time discretization are discussed and theoretically proven. Under some certain conditions that the solution and initial value satisfy, we give the error estimates for both semidiscrete and fully discrete schemes. Finally, a numerical example is presented to demonstrate the effectiveness of our numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  2. Pani, A.K., Yuan, J.Y.: Semidiscrete finite element Galerkin approximations to the equations of motion arising in the Oldroyd model. IMA J. Numer. Anal. 25(4), 750–782 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445–466 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 33, 691–698 (2015)

    Google Scholar 

  7. Guo, B.Y., Jiao, Y.J.: Spectral method for Navier–Stokes equations with slip boundary conditions. J. Sci. Comput. 58, 249–274 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernardi, C., Raugel, G.: A conforming finite element method for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 22(3), 455–473 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Févrière, C., Laminie, J., Poullet, P., Poullet, P.: On the penalty-projection method for the Navier-Stokes equations with the MAC mesh. J. Comput. Appl. Math. 226, 228–245 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Min, C.H., Gibou, F.: A second order accurate projection method for the incompressible Navier–Stokes equations on non-graded adaptive grids. J. Comput. Phys. 219, 912–929 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62(3), 855–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brown, D.L., Cortez, R., Minion, M.L.: Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168(2), 464–499 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goswami, D., Damázio, P. D.: A two-level finite element method for time-dependent incompressible Navier–Stokes equations with non-smooth initial data. arXiv:1211.3342 [math.NA]

  14. Burman, E.: Pressure projection stabilizations for Galerkin approximations of Stokes and Darcys problem. Numer. Methods Partial Differ. Equ. 24, 127–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zeng, F.H., Li, C.P., Liu, F.W., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, 55–78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tone, F.: Error analysis for a second order scheme for the Navier–Stokes equations. Appl. Numer. Math. 50(1), 93–119 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Baker, G.A.: Galerkin Approximations for the Navier–Stokes Equations. Harvard University, Cambridge (1976)

    Google Scholar 

  18. Johnston, H., Liu, J.G.: Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term. J. Comput. Phys. 199(1), 221–259 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Okamoto, H.: On the semi-discrete finite element approximation for the nonstationary Navier–Stokes equation. J. Fac. Sci. Univ. Tokyo Sect. A Math. 29(3), 613–651 (1982)

    MATH  Google Scholar 

  20. Frutos, J.D., Garca-Archilla, B., Novo, J.: Optimal error bounds for two-grid schemes applied to the Navier–Stokes equations. Appl. Math. Comput. 218(13), 7034–7051 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shen, J.: On error estimates of projection methods for the Navier–Stokes equations: second order schemes. Math. Comput. 65, 1039–1065 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. 25(3), 489–512 (1988)

    Article  MATH  Google Scholar 

  24. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MATH  Google Scholar 

  25. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shan, L., Hou, Y.: A fully discrete stabilized finite element method for the time-dependent Navier–Stokes equations. Appl. Math. Comput. 215(1), 85–99 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Huang, P., Feng, X., Liu, D.: A stabilized finite element method for the time-dependent stokes equations based on Crank–Nicolson scheme. Appl. Math. Model. 37(4), 1910–1919 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Carvalho-Neto, P.M.D., Planas, G.: Mild solutions to the time fractional Navier–Stokes equations in \(\mathbf{R}^N\). J. Differ. Equ. 259(7), 2948–2980 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Q., Hou, Y.: A two-level finite element method for the Navier–Stokes equations based on a new projection. Appl. Math. Model. 34(2), 383–399 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nochetto, R.H., Pyo, J.H.: The gauge–uzawa finite element method. Part I. SIAM J. Numer. Anal. 43, 1043–1068 (2005)

    Article  MATH  Google Scholar 

  31. Rannacher, R.: Numerical analysis of the Navier–Stokes equations. Appl. Math. 38, 361–380 (1993)

    MathSciNet  MATH  Google Scholar 

  32. Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  33. Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177, 488–494 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Chacón Rebollo, T., Gómez, T., Mármol, M.: Numerical analysis of penalty stabilized finite element discretizations of evolution Navier–Stokes equations. J. Sci. Comput. 63, 885–912 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin, Heidelberg (1986)

    Book  MATH  Google Scholar 

  36. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, Spriger Series in Computational Mathematics, vol. 25. Springer-Verlag, Berlin, Heidelberg (1997)

    Book  Google Scholar 

  37. Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235(11), 3285–3290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem. Comput. Math. Appl. 70(4), 573–591 (2015)

    Article  MathSciNet  Google Scholar 

  40. He, Y.N., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 1351–1359 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. He, Y.N., Sun, W.W.: Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 45(2), 837–869 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. He, Y., Huang, P., Feng, X.: \(H^2\)-stability of the first order fully discrete schemes for the time-dependent Navier–Stokes equations. J. Sci. Comput. 62(1), 230–264 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Luo, Z.D.: A new finite volume element formulation for the non-stationary Navier–Stokes equations. Adv. Appl. Math. Mech. 6, 615–636 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Giga, Y.: Analyticity of the semigroup generated by the stokes operator in \(L_r\) spaces. Math. Z. 178(3), 297–329 (1981)

    Article  MATH  Google Scholar 

  45. Rui, A.C., Ferreira, R.: A discrete fractional Gronwall inequality. Proc. Am. Math. Soc. 140(5), 1605–1612 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors want to thank Prof. Yang Liu, Inner Mongolia University, China, for his kindness and help with the numerical example. The authors would like to express their sincere gratitude to the anonymous reviewers for their careful reading of the manuscript, as well as their comments that lead to a considerable improvement of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Yang.

Additional information

This research is supported by the National Natural Science Foundation of China under Grant 61271010 and by Beijing Natural Science Foundation under Grant 4152029.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yang, X. & Zhang, Y. Error Estimates of Mixed Finite Element Methods for Time-Fractional Navier–Stokes Equations. J Sci Comput 70, 500–515 (2017). https://doi.org/10.1007/s10915-016-0252-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0252-3

Keywords

Mathematics Subject Classification

Navigation