Skip to main content
Log in

Optimal Error Estimates of Linearized Crank–Nicolson Galerkin Method for Landau–Lifshitz Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper focuses on the optimal error estimates of a linearized Crank–Nicolson scheme for the Landau–Lifshitz (LL) equation describing the evolution of spin fields in continuum ferromagnets. We present a rigorous analysis for the regularity of the local strong solution to LL equation with Neumann boundary conditions. The proof of the optimal error estimates are based upon an error splitting technique proposed by Li and Sun. Numerical results are provided to confirm our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Alouges, F.: A new finite element scheme for LandauCLifshitz equations. Discrete Continuous Dyn. Syst. Ser. S 1, 187–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alouges, F., Jaisson, P.: Convergence of a finite element discretization for the Landau-Lifshitz equations in micromagnetism. Math. Models Methods Appl. Sci. 16, 299–316 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alouges, F., Soyeur, A.: On global weak solutions for Landau–Lifshitz equations: existence and nonuniqueness. Nonlinear Anal. 18, 1071–1094 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartels, S., Ko, J., Prohl, A.: Numerical anaysis of an explicit approximation scheme for the Landau–Lifshitz–Gilbert equation. Math. Comput. 77, 773–788 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartels, S., Lubich, C., Prhol, A.: Convergent discretization of heat and wave map flows to shperes using approximate discrete Lagrange multipliers. Math. Comput. 78, 1269–1292 (2009)

    Article  MATH  Google Scholar 

  7. Bartels, S., Prohl, A.: Convergence of an implicit finite element method for the Landau–Lifshitz–Gilbert equation. SIAM J. Numer. Anal. 44, 1405–1419 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenner, S., Scott, L.: The mathematical theory of finite element methods. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  9. Carbou, G., Fabrie, P.: Regular solutions for Landau–Lifshitz equation in a bounded domain. Diff. Integr. Eqns. 14, 213–229 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Chen, Y.: A remark on the regularity for Landau–Lifshitz equations. Appl. Anal. 63, 207–221 (1996)

    Article  MathSciNet  Google Scholar 

  11. Chen, Y.: Existence and singularities for the Dirichlet boundary value problems of Landau–Lifshitz equations. Nonlinear Anal. 48A, 411–426 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Y., Guo, B.: Two dimensional Landau–Lifshitz equation. J. Partial Diff. Eqn. 9, 313–322 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Cimrák, I.: A survey on the numerics and computations for the Landau–Lifshitz equation of micromagnetism. Arch. Comput. Methods Eng. 15, 277–309 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cimrák, I.: Error estimates for a semi-implicit numerical scheme solving the LandauCLifshitz equation with an exchange field. IMA J. Numer. Anal. 25, 611–634 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deng, W., Yan, B.: On Landau–Lifshitz equations of no-exchange energy models in ferromagnetics. Evol. Equ. Control Theory 2, 599–620 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Et, W., Wang, X.: Numerical methods for the Landau–Lifshitz equation. SIAM J. Numer. Anal. 38, 1647–1665 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fidler, J., Schrefl, T.: Micromagnetic modelling—the current state of the art. J. Phys. D: Appl. Phys. 33, R135–R156 (2000)

    Article  Google Scholar 

  18. Gao, H.: Optimal error estimates of a linearized backward Euler FEM for the Landau–Lifshitz equation. SIAM J. Numer. Anal. 52, 2574–2593 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, H., Li, B., Sun, W.: Optimal error estimates of linearized Crank–Nicolson Galerkin FEMs for the time-dependent Ginzburg–Landau equations in superconductivity. SIAM J. Numer. Anal. 52, 1183–1202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, B., Han, Y.: Global regular solutions for Landau–Lifshitz equation. Front. Math. China 1, 538–568 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, B., Hong, M.: The Landau–Lifshitz equation of the ferromagnetic spin chain and harmonic maps. Calc. Var. 1, 311–334 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Heywood, J., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hou, Y., Li, B., Sun, W.: Error estimates of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kruzík, M., Prohl, A.: Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev. 48, 439–483 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Landau, L., Lifshitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Zeitsch. der Sow. 8, 153–169 (1935)

    MATH  Google Scholar 

  27. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Inter. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, B., Gao, H., Sun, W.W.: Unconditionally optimal error estimates of a Crank–Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pistella, F., Valente, V.: Numerical stability of a discrete model in the dynamics of ferromagnetic bodies. Numer. Methods Partial Differ. Equ. 15, 544–557 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Prohl, A.: Computational Micromagnetism. Teubner, Stuttgart (2001)

    Book  MATH  Google Scholar 

  32. Visintin, A.: On Landau–Lifshitz’s equations for ferromagnetism. Jpn. J. Appl. Math. 2, 69–84 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhong, P., Wang, S., Guo, B.: Some blowup solutions about two systems derived from Landau–Lifshitz–Gilbert equation. Appl. Math. Model. 37, 4177–4188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhong, P., Wang, S., Zeng, M.: Two blowup solutions for the inhomogeneous isotropic Landau-Lifshitz equation. J. Math. Anal. Appl. 409, 74–83 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous reviewers for their careful reviews and valuable comments to improve the quality of this manuscript. This work was done while the author was visiting Department of Mathematics at City University of Hong Kong. The author would like to thank Professor Weiwei Sun for his kindly invitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong An.

Ethics declarations

Funding

This work is supported by Zhejiang Provincial Natural Science Foundation with Grant Nos. LY16A010017 and LY14A010020.

Appendix: Proof of Theorem 2.3

Appendix: Proof of Theorem 2.3

Taking \(t=0\) at (1.4), we get

$$\begin{aligned} \mathbf{m }_t(0)=\lambda \Delta \mathbf{m }_0 + \mathbf{m }_0\times \Delta \mathbf{m }_0+\lambda |\nabla \mathbf{m }_0|^2\mathbf{m }_0. \end{aligned}$$

By a classical argument, we can prove

$$\begin{aligned} ||\mathbf{m }_t(0)||_{H^3}\le C. \end{aligned}$$
(8.1)

Differentiating (1.4) with respect to t leads to

$$\begin{aligned} \mathbf{m }_{tt}-\lambda \Delta \mathbf{m }_t= \mathbf{m }_t\times \Delta \mathbf{m }+\mathbf{m }\times \Delta \mathbf{m }_t+\lambda |\nabla \mathbf{m }|^2\mathbf{m }_t+ 2\lambda (\nabla \mathbf{m }\cdot \nabla \mathbf{m }_t)\mathbf{m }. \end{aligned}$$
(8.2)

The following theorem improves the regularity (2.11) in Theorem 2.2.

Theorem 8.1

Suppose \(\mathbf{m }_0\in \mathbf{H }^5(\Omega )\). Then we have

$$\begin{aligned} \max \limits _{t\in [0,T]} || \mathbf{m }_t(t)||_{H^1} +\displaystyle \int _0^T ||\mathbf{m }_{tt}||_{L^2}^2+|| \mathbf{m }_t||_{H^2}^2 dt\le C. \end{aligned}$$
(8.3)

Proof

Multiplying (8.2) by \(-\Delta \mathbf{m }_t\) and integrating over \(\Omega \) yield

$$\begin{aligned}&\ \displaystyle \frac{1}{2}\displaystyle \frac{d}{dt}||\nabla \mathbf{m }_t||_{L^2}^2+\lambda ||\Delta \mathbf{m }_t||_{L^2}^2\nonumber \\&\quad =-(\mathbf{m }_t\times \Delta \mathbf{m },\Delta \mathbf{m }_t)-\lambda (|\nabla \mathbf{m }|^2\mathbf{m }_t,\Delta \mathbf{m }_t)- 2\lambda ((\nabla \mathbf{m }\cdot \nabla \mathbf{m }_t)\mathbf{m },\Delta \mathbf{m }_t)\nonumber \\&\quad =I_1+I_2+I_3, \end{aligned}$$
(8.4)

where we use \((\mathbf{m }\times \Delta \mathbf{m }_t,\Delta \mathbf{m }_t)=0\). By Hölder inequality, Young inequality, (2.7) and (2.9), \(I_1\) is bounded as

$$\begin{aligned} |I_1|&\le ||\mathbf{m }_t||_{L^\infty }||\Delta \mathbf{m }||_{L^2}||\Delta \mathbf{m }_t||_{L^2}\\&\le C||\mathbf{m }_t||_{L^2}^{\frac{4-d}{4}}(||\mathbf{m }_t||_{L^2}^2+||\Delta \mathbf{m }_t||_{L^2}^2)^{\frac{d}{8}}||\Delta \mathbf{m }_t||_{L^2}\\&\le \varepsilon _1||\Delta \mathbf{m }_t||_{L^2}^2+C ||\mathbf{m }_t||_{L^2}^{\frac{4-d}{2}} (||\mathbf{m }_t||_{L^2}^2+||\Delta \mathbf{m }_t||_{L^2}^2)^{\frac{d}{4}}\\&\le 2\varepsilon _1||\Delta \mathbf{m }_t||_{L^2}^2+C ||\mathbf{m }_t||_{L^2}^2, \end{aligned}$$

where \(\varepsilon _1>0\) is a small constant determined later. It follows from (2.1) and (2.9) that

$$\begin{aligned} |I_2|\le ||\mathbf{m }_t||_{L^6}||\nabla \mathbf{m }||_{L^6}^2||\Delta \mathbf{m }_t||_{L^2}\le \varepsilon _1||\Delta \mathbf{m }_t||_{L^2}^2+C||\nabla \mathbf{m }_t||_{L^2}^2. \end{aligned}$$

By a similar way, we have

$$\begin{aligned} |I_3|&\le C ||\nabla \mathbf{m }_t||_{L^2}^{\frac{6-d}{6}}||\Delta \mathbf{m }_t||_{L^2}^{1+\frac{d}{6}}+C||\nabla \mathbf{m }_t||_{L^2}||\Delta \mathbf{m }_t||_{L^2}\\&\le \varepsilon _1||\Delta \mathbf{m }_t||_{L^2}^2+C||\nabla \mathbf{m }_t||_{L^2}^2. \end{aligned}$$

Let \(\varepsilon _1<\lambda /4\). Then combining these estimates into (8.4), and using Gronwall inequality, we conclude that

$$\begin{aligned} \max \limits _{t\in [0,T]} || \mathbf{m }_t(t)||_{H^1} +\displaystyle \int _0^T || \mathbf{m }_t||_{H^2}^2 dt\le C, \end{aligned}$$
(8.5)

where we use (2.10) and (8.1). From (8.2), one has

$$\begin{aligned} ||\mathbf{m }_{tt}||_{L^2}\le&||\Delta \mathbf{m }_t||_{L^2}+||\mathbf{m }_t||_{L^\infty }||\Delta \mathbf{m }||_{L^2}+||\mathbf{m }||_{L^\infty }||\Delta \mathbf{m }_t||_{L^2}\\&+||\nabla \mathbf{m }||_{L^6}^2||\mathbf{m }_t||_{L^6}+||\nabla \mathbf{m }||_{L^6}||\nabla \mathbf{m }_t||_{L^3}\\ \le&C ||\Delta \mathbf{m }_t||_{L^2}+C||\mathbf{m }_t||_{L^2}^{\frac{4-d}{4}}(||\mathbf{m }_t||_{L^2}^2+||\Delta \mathbf{m }_t||_{L^2}^2)^{\frac{d}{8}}\\&+C|| \mathbf{m }_t||_{H^1}+C||\nabla \mathbf{m }_t||_{L^2}^{\frac{6-d}{6}}||\Delta \mathbf{m }_t||_{L^2}^{\frac{d}{6}}+C||\nabla \mathbf{m }_t||_{L^2}\\ \le&C||\mathbf{m }_t||_{H^2}+C(||\mathbf{m }_t||_{L^2}^2+||\Delta \mathbf{m }_t||_{L^2}^2)^{1/2}+C||\Delta \mathbf{m }_t||_{L^2}, \end{aligned}$$

which implies that \(\mathbf{m }_{tt}\in \mathbf{L }^2(0,T;\mathbf{L }^2(\Omega ))\) after integrating above inequality from 0 to T and using (8.5). \(\square \)

Taking \(t=0\) in (8.2) and using (8.1), we have

$$\begin{aligned} ||\mathbf{m }_{tt}(0)||_{H^1}\le C. \end{aligned}$$
(8.6)

Differentiating (8.2) with respect to t, again, we get

$$\begin{aligned} \mathbf{m }_{ttt}-\lambda \Delta \mathbf{m }_{tt}=&\mathbf{m }_{tt}\times \Delta \mathbf{m }+ 2\mathbf{m }_t\times \Delta \mathbf{m }_t+\mathbf{m }\times \Delta \mathbf{m }_{tt}+2\lambda |\nabla \mathbf{m }_t|^2\mathbf{m }\nonumber \\&+\lambda |\nabla \mathbf{m }|^2\mathbf{m }_{tt}+ 2\lambda (\nabla \mathbf{m }\cdot \nabla \mathbf{m }_{tt})\mathbf{m }+4\lambda (\nabla \mathbf{m }\cdot \nabla \mathbf{m }_{t})\mathbf{m }_t. \end{aligned}$$
(8.7)

Then we can show the following estimate for \(\mathbf{m }_{tt}\).

Theorem 8.2

Suppose \(\mathbf{m }_0\in \mathbf{H }^5(\Omega )\). Then we have

$$\begin{aligned} \max \limits _{t\in [0,T]} || \mathbf{m }_{tt}(t)||_{L^2} +\displaystyle \int _0^T || \mathbf{m }_{tt}||_{H^1}^2 dt\le C. \end{aligned}$$
(8.8)

Proof

Testing (8.7) by \( \mathbf{m }_{tt}\) and using \((\mathbf{m }_{tt}\times \Delta \mathbf{m },\mathbf{m }_{tt})=0\) yield

$$\begin{aligned}&\displaystyle \frac{1}{2}\displaystyle \frac{d}{dt}|| \mathbf{m }_{tt}||_{L^2}^2+\lambda ||\nabla \mathbf{m }_{tt}||_{L^2}^2\nonumber \\&\quad =(\mathbf{m }\times \Delta \mathbf{m }_{tt},\mathbf{m }_{tt})+2(\mathbf{m }_{t}\times \Delta \mathbf{m }_t, \mathbf{m }_{tt})+\lambda (|\nabla \mathbf{m }|^2\mathbf{m }_{tt}, \mathbf{m }_{tt})\nonumber \\&\qquad +2\lambda (|\nabla \mathbf{m }_t|^2\mathbf{m }, \mathbf{m }_{tt}) +2\lambda ((\nabla \mathbf{m }\cdot \nabla \mathbf{m }_{tt})\mathbf{m },\mathbf{m }_{tt})+4\lambda ((\nabla \mathbf{m }\cdot \nabla \mathbf{m }_{t})\mathbf{m }_t,\mathbf{m }_{tt})\nonumber \\&\quad =I_4+\cdots +I_9. \end{aligned}$$
(8.9)

By integrating by parts, we estimate \(I_4\) by

$$\begin{aligned} |I_4|\le ||\nabla \mathbf{m }||_{L^6}||\nabla \mathbf{m }_{tt}||_{L^2}||\mathbf{m }_{tt}||_{L^3} \le \varepsilon _2 ||\nabla \mathbf{m }_{tt}||_{L^2}^2+C||\mathbf{m }_{tt}||_{L^2}^2 \end{aligned}$$

for some small \(\varepsilon _2>0\) determined later, where we use Hölder inequality, Young inequality, (2.1), (2.3), (2.9). From (2.12.9) and (8.5), other terms in the right-hand side of (8.9) are bounded, respectively, by

$$\begin{aligned} |I_5|&\le ||\mathbf{m }_t||_{L^3}||\Delta \mathbf{m }_{t}||_{L^2}||\mathbf{m }_{tt}||_{L^6}\le \varepsilon _2 ||\nabla \mathbf{m }_{tt}||_{L^2}^2+ C ||\Delta \mathbf{m }_{t}||_{L^2}^2,\\ |I_6|&\le ||\nabla \mathbf{m }||_{L^6}^2||\mathbf{m }_{tt}||_{L^2}||\mathbf{m }_{tt}||_{L^6}\le \varepsilon _2 ||\nabla \mathbf{m }_{tt}||_{L^2}^2+ C || \mathbf{m }_{tt}||_{L^2}^2,\\ |I_7|&\le ||\mathbf{m }||_{L^\infty }||\nabla \mathbf{m }_t||_{L^3}||\nabla \mathbf{m }_t||_{L^2}||\mathbf{m }_{tt}||_{L^6}\le C||\nabla \mathbf{m }_t||_{L^2}^{\frac{6-d}{6}}|| \mathbf{m }_t||_{H^2}^{\frac{d}{6}}||\nabla \mathbf{m }_{tt}||_{L^2}\\&\le \varepsilon _2 ||\nabla \mathbf{m }_{tt}||_{L^2}^2+ C || \mathbf{m }_t||_{H^2}^2+ C ,\\ |I_8|&\le ||\nabla \mathbf{m }||_{L^6}||\mathbf{m }||_{L^\infty }||\nabla \mathbf{m }_{tt}||_{L^2}||\mathbf{m }_{tt}||_{L^3}\\&\le C ||\nabla \mathbf{m }_{tt}||_{L^2}||\mathbf{m }_{tt}||_{L^2}+ C ||\mathbf{m }_{tt}||_{L^2}^{\frac{6-d}{6}}||\nabla \mathbf{m }_{tt}||_{L^2}^{1+\frac{d}{6}}\\&\le \varepsilon _2 ||\nabla \mathbf{m }_{tt}||_{L^2}^2+ C || \mathbf{m }_{tt}||_{L^2}^2,\\ |I_9|&\le ||\nabla \mathbf{m }||_{L^2}||\nabla \mathbf{m }_t||_{L^6}||\mathbf{m }_t||_{L^6}||\mathbf{m }_{tt}||_{L^6}\\&\le C ||\mathbf{m }_t||_{H^2}||\nabla \mathbf{m }_{tt}||_{L^2}\le \varepsilon _2 ||\nabla \mathbf{m }_{tt}||_{L^2}^2+ C || \mathbf{m }_{t}||_{H^2}^2. \end{aligned}$$

Combining these estimates into (8.9) and taking \(\varepsilon _2<\lambda /6\), the estimate (8.8) follows from Gronwall inequality. \(\square \)

To improve the regularity of the solution \(\mathbf{m }\) to the LL equation (1.4) and (1.2), the following estimates (8.10) and (8.12) for \(\mathbf{m }\times \Delta \mathbf{m }\) are needed.

Lemma 8.1

Suppose \(\mathbf{m }_0\in \mathbf{H }^5(\Omega )\). Then we have

$$\begin{aligned} \max \limits _{t\in [0,T]} || (\mathbf{m }\times \Delta \mathbf{m })(t)||_{H^1} +\displaystyle \int _0^T ||\mathbf{m }\times \Delta \mathbf{m }||_{H^2}^2 dt\le C . \end{aligned}$$
(8.10)

Proof

It follows from (1.5) and (8.3) that

$$\begin{aligned} ||\mathbf{m }\times \Delta \mathbf{m }||_{H^1}&\le ||\mathbf{m }_t||_{H^1}+||\mathbf{m }\times \mathbf{m }_t||_{H^1}\nonumber \\&\le C||\mathbf{m }_t||_{H^1}+||\nabla \mathbf{m }\times \mathbf{m }_t||_{L^2}+C||\mathbf{m }\times \nabla \mathbf{m }_t||_{L^2}\nonumber \\&\le C||\mathbf{m }_t||_{H^1}+C||\mathbf{m }||_{H^2}||\mathbf{m }_t||_{H^1}\le C. \end{aligned}$$
(8.11)

Differentiating (1.5) with respect to \(\mathbf{x }\) twice, we obtain

$$\begin{aligned} (1+\lambda ^2)\nabla ^2(\mathbf{m }\times \Delta \mathbf{m })=\nabla ^2\mathbf{m }_t+\lambda (\nabla ^2\mathbf{m }\times \mathbf{m }_t+\nabla \mathbf{m }\times \nabla \mathbf{m }_t+\mathbf{m }\times \nabla ^2 \mathbf{m }_t). \end{aligned}$$

Then one has

$$\begin{aligned}&\displaystyle \int _0^T||\nabla ^2(\mathbf{m }\times \Delta \mathbf{m })||_{L^2}^2dt\\&\quad \le \displaystyle \int _0^T\left( ||\nabla ^2\mathbf{m }_t||_{L^2}^2+||\nabla ^2\mathbf{m }\times \mathbf{m }_t||_{L^2}^2 +||\nabla \mathbf{m }\times \nabla \mathbf{m }_t||_{L^2}^2+||\mathbf{m }\times \nabla ^2 \mathbf{m }_t||_{L^2}^2\right) dt\\&\quad \le C \displaystyle \int _0^T\left( ||\mathbf{m }_t||_{H^2}^2+||\mathbf{m }||_{H^2}^2||\mathbf{m }_t||_{L^\infty }^2 +||\mathbf{m }||_{H^2}^2||\mathbf{m }_t||_{H^2}^2+||\mathbf{m }||_{L^\infty }^2||\mathbf{m }_t||_{H^2}^2\right) dt\le C, \end{aligned}$$

which together with (8.11) completes the proof of (8.10). \(\square \)

Lemma 8.2

Suppose \(\mathbf{m }_0\in \mathbf{H }^5(\Omega )\). Then we have

$$\begin{aligned} \max \limits _{t\in [0,T]} || (\mathbf{m }\times \Delta \mathbf{m })_t||_{L^2} +\displaystyle \int _0^T || (\mathbf{m }\times \Delta \mathbf{m })_t||_{H^1}^2 dt\le C. \end{aligned}$$
(8.12)

Proof

Differentiating (1.5) with respect to t yields

$$\begin{aligned} (1+\lambda ^2)(\mathbf{m }\times \Delta \mathbf{m })_t=\mathbf{m }_{tt}+\lambda \mathbf{m }\times \mathbf{m }_{tt}. \end{aligned}$$

From (2.9) and (8.8), it is easy to show

$$\begin{aligned} \max \limits _{t\in [0,T]}|| (\mathbf{m }\times \Delta \mathbf{m })_t||_{L^2}\le C. \end{aligned}$$

Moreover, from (2.9) and (8.8) one has

$$\begin{aligned}&\displaystyle \int _0^T ||\nabla (\mathbf{m }\times \Delta \mathbf{m })_t||_{L^2}^2 dt\\&\quad \le \displaystyle \int _0^T ||\nabla \mathbf{m }_{tt}||_{L^2}^2+||\nabla \mathbf{m }\times \mathbf{m }_{tt}||_{L^2}^2+||\mathbf{m }\times \nabla \mathbf{m }_{tt}||_{L^2}^2 dt\\&\quad \le \displaystyle \int _0^T C||\nabla \mathbf{m }_{tt}||_{L^2}^2+||\mathbf{m }||_{H^2}^2||\nabla \mathbf{m }_{tt}||_{L^2}^2+||\mathbf{m }||_{L^\infty }^2|| \nabla \mathbf{m }_{tt}||_{L^2}^2 dt \le C, \end{aligned}$$

which completes the proof of (8.12). \(\square \)

Based upon the above results, The regularities of the solution \(\mathbf{m }\) can be improved.

Theorem 8.3

Suppose \(\mathbf{m }_0\in \mathbf{H }^5(\Omega )\). Then we have

$$\begin{aligned} \max \limits _{t\in [0,T]} || \mathbf{m }(t)||_{H^3} \le C. \end{aligned}$$
(8.13)

Proof

Differentiating (1.4) with respect to \(\mathbf{x }\) yields:

$$\begin{aligned} -\lambda \nabla \Delta \mathbf{m }=\nabla (\mathbf{m }\times \Delta \mathbf{m })-\nabla \mathbf{m }_t+2\lambda (\nabla ^2\mathbf{m }\cdot \nabla \mathbf{m })\mathbf{m }+\lambda |\nabla \mathbf{m }|^2\nabla \mathbf{m }. \end{aligned}$$

From (2.8), we have

$$\begin{aligned} ||\nabla ^3\mathbf{m }||_{L^2}&\le ||\nabla \mathbf{m }_t||_{L^2}+||\nabla (\mathbf{m }\times \Delta \mathbf{m })||_{L^2}+||\Delta \mathbf{m }||_{L^2} +||(\nabla ^2\mathbf{m }\cdot \nabla \mathbf{m })\mathbf{m }||_{L^2}+|||\nabla \mathbf{m }|^2\nabla \mathbf{m }||_{L^2}\\&\le C\left( ||\nabla \mathbf{m }_t||_{L^2}+||\nabla (\mathbf{m }\times \Delta \mathbf{m })||_{L^2}+||\Delta \mathbf{m }||_{L^2} +||\nabla ^2\mathbf{m }||_{L^3}||\nabla \mathbf{m }||_{L^6}+||\nabla \mathbf{m }||_{L^6}^2 \right) \\&\le C ||\nabla ^2\mathbf{m }||_{L^2}^{\frac{6-d}{6}}||\nabla ^3\mathbf{m }||_{L^2}^{\frac{d}{6}}+ C \le \displaystyle \frac{1}{2}||\nabla ^3\mathbf{m }||_{L^2}+ C||\nabla ^2\mathbf{m }||_{L^2}+ C, \end{aligned}$$

which leads to \(||\nabla ^3\mathbf{m }||_{L^2}\le C\) and \(\mathbf{m }\in \mathbf{L }^\infty (0,T;\mathbf{H }^3(\Omega ))\). \(\square \)

An alternative to (8.2 ) is

$$\begin{aligned} \mathbf{m }_{tt}-\lambda \Delta \mathbf{m }_t= (\mathbf{m }\times \Delta \mathbf{m })_t+\lambda |\nabla \mathbf{m }|^2\mathbf{m }_t+ 2\lambda (\nabla \mathbf{m }\cdot \nabla \mathbf{m }_t)\mathbf{m }. \end{aligned}$$
(8.14)

We can derive the following estimates for \(\mathbf{m }_t\) and \(\mathbf{m }_{tt}\).

Theorem 8.4

Suppose \(\mathbf{m }_0\in \mathbf{H }^5(\Omega )\). Then we have

$$\begin{aligned} \max \limits _{t\in [0,T]} || \mathbf{m }_t(t)||_{H^2} +\displaystyle \int _0^T || \mathbf{m }_t||_{H^3}^2 dt\le C. \end{aligned}$$
(8.15)

Proof

In view of (2.5), (8.8) and (8.12), it is easy to show

$$\begin{aligned} ||\nabla ^2\mathbf{m }_t||_{L^2}&\le C\left( ||\mathbf{m }_{tt}||_{L^2}+||(\mathbf{m }\times \Delta \mathbf{m })_t||_{L^2}+|||\nabla \mathbf{m }|^2\mathbf{m }_t||_{L^2}+||(\nabla \mathbf{m }\cdot \nabla \mathbf{m }_t)\mathbf{m }||_{L^2}\right) \\&\le C \left( ||\mathbf{m }_{tt}||_{L^2}+||(\mathbf{m }\times \Delta \mathbf{m })_t||_{L^2}+||\mathbf{m }||_{H^3}^2||\mathbf{m }_t||_{L^2}+ ||\mathbf{m }||_{H^3}||\nabla \mathbf{m }_t||_{L^2}\right) \le C, \end{aligned}$$

which leads to \(\mathbf{m }_t\in \mathbf{L }^\infty (0,T;\mathbf{H }^2(\Omega ))\). Differentiating (8.14) with respect to \(\mathbf{x }\) yields:

$$\begin{aligned} \nabla \mathbf{m }_{tt}-\lambda \nabla \Delta \mathbf{m }_t&= \nabla (\mathbf{m }\times \Delta \mathbf{m })_t+ 2\lambda (\nabla ^2\mathbf{m }\cdot \nabla \mathbf{m })\mathbf{m }_t+\lambda |\nabla \mathbf{m }|^2\nabla \mathbf{m }_t\\&\quad +2\lambda (\nabla ^2\mathbf{m }\cdot \nabla \mathbf{m }_t)\mathbf{m }+2\lambda (\nabla \mathbf{m }\cdot \nabla ^2\mathbf{m }_t)\mathbf{m }+2\lambda (\nabla \mathbf{m }\cdot \nabla \mathbf{m }_t)\nabla \mathbf{m }. \end{aligned}$$

By using (2.8), we get

$$\begin{aligned} ||\nabla ^3\mathbf{m }_t||_{L^2}&\le C\left( ||\nabla \mathbf{m }_{tt}||_{L^2}+|| \nabla (\mathbf{m }\times \Delta \mathbf{m })_t||_{L^2}+||\mathbf{m }||_{H^3}^2||\nabla \mathbf{m }_t||_{L^2}\right. \\&\quad \left. +||\Delta \mathbf{m }_t||_{L^2}+||\mathbf{m }||_{H^3}|| \mathbf{m }_t||_{H^2}\right) , \end{aligned}$$

which together with (8.8) and (8.12) yields \(\mathbf{m }_t\in \mathbf{L }^2(0,T;\mathbf{H }^3(\Omega ))\). \(\square \)

Theorem 8.5

Suppose \(\mathbf{m }_0\in \mathbf{H }^5(\Omega )\). Then we have

$$\begin{aligned} \max \limits _{t\in [0,T]} || \mathbf{m }_{tt}(t)||_{H^1} +\displaystyle \int _0^T || \mathbf{m }_{tt}||_{H^2}^2 dt\le C. \end{aligned}$$
(8.16)

Proof

Testing (8.7) by \( -\Delta \mathbf{m }_{tt}\) and using Young inequality yield

$$\begin{aligned}&\displaystyle \frac{1}{2}\displaystyle \frac{d}{dt}||\nabla \mathbf{m }_{tt}||_{L^2}^2+\lambda ||\Delta \mathbf{m }_{tt}||_{L^2}^2\\&\quad \le \left( ||\mathbf{m }_{tt}||_{L^6}||\mathbf{m }||_{H^3}+||\mathbf{m }_t||_{L^\infty }||\Delta \mathbf{m }_t||_{L^2}+||\nabla \mathbf{m }||_{L^\infty }^2||\mathbf{m }_{tt}||_{L^2}\right. \\&\qquad \left. +||\mathbf{m }_t||_{H^2}^2+||\mathbf{m }||_{H^3}^2||\nabla \mathbf{m }_{tt}||_{L^2}+||\mathbf{m }||_{L^\infty }||\mathbf{m }_t||_{L^\infty }||\nabla \mathbf{m }_t||_{L^2}\right) ||\Delta \mathbf{m }_{tt}||_{L^2}\\&\quad \le \displaystyle \frac{\lambda }{2}||\Delta \mathbf{m }_{tt}||_{L^2}^2+C||\nabla \mathbf{m }_{tt}||_{L^2}^2+ C. \end{aligned}$$

Integrating the above inequality from 0 to T and using (8.6), we complete the proof of (8.16). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, R. Optimal Error Estimates of Linearized Crank–Nicolson Galerkin Method for Landau–Lifshitz Equation. J Sci Comput 69, 1–27 (2016). https://doi.org/10.1007/s10915-016-0181-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0181-1

Keywords

Mathematics Subject Classification

Navigation