Skip to main content
Log in

High Order Finite Difference Methods for the Wave Equation with Non-conforming Grid Interfaces

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We use high order finite difference methods to solve the wave equation in the second order form. The spatial discretization is performed by finite difference operators satisfying a summation-by-parts property. The focus of this work is on numerical treatments of non-conforming grid interfaces and non-conforming mesh blocks. Interface conditions are imposed weakly by the simultaneous approximation term technique in combination with interface operators, which move discrete solutions between grids at an interface. In particular, we consider an interpolation approach and a projection approach with corresponding operators. A norm-compatible condition of the interface operators leads to energy stability for first order hyperbolic systems. By imposing an additional constraint on the interface operators, we derive an energy estimate of the numerical scheme for the second order wave equation. We carry out eigenvalue analyses to investigate the additional constraint and its relation to stability. In addition, a truncation error analysis is performed, and discussed in relation to convergence properties of the numerical schemes. In the numerical experiments, stability and accuracy properties of the numerical scheme are further explored, and the practical usefulness of non-conforming grid interfaces and mesh blocks is discussed in two practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Appelö, D., Kreiss, G.: Application of a perfectly matched layer to the nonlinear wave equation. Wave Motion 44, 531–548 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balanis, C.A.: Advanced Engineering Electromagnetics. Wiley, New York (1989)

    Google Scholar 

  3. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111, 220–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148, 341–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014)

    Article  MathSciNet  Google Scholar 

  6. Duru, K., Kreiss, G., Mattsson, K.: Stable and high-order accurate boundary treatments for the elastic wave equation on second-order form. SIAM J. Sci. Comput. 36, A2787–A2818 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35, A1233–A1253 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Graff, K.F.: Wave Motion in Elastic Solids. Dover Publications, New York (1991)

    MATH  Google Scholar 

  9. Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer, Berlin (2008)

    MATH  Google Scholar 

  10. Gustafsson, B., Kreiss, H.O., Oliger, J.: Time-Dependent Problems and Difference Methods. Wiley, New Jersey (2013)

    Book  MATH  Google Scholar 

  11. Hagstrom, T., Hagstrom, G.: Grid stabilization of high-order one-sided differencing II: second-order wave equations. J. Comput. Phys. 231, 7907–7931 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Knupp, P., Steinberg, S.: Fundamentals of Grid Generation. CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  13. Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave propagation—I. Validation. Geophys. J. Int. 149, 390–412 (2002)

    Article  Google Scholar 

  14. Kozdon, J.E., Wilcox, L.C.: Stable coupling of nonconforming, high-order finite difference methods. arXiv:1410.5746v3 [math.NA], accepted in SIAM Journal on Scientific Computing

  15. Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus XXIV 24, 199–215 (1972)

    Article  MathSciNet  Google Scholar 

  16. Kreiss, H.O., Petersson, N.A., Yström, J.: Difference approximations for the second order wave equation. SIAM J. Numer. Anal. 40, 1940–1967 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. Mathematical aspects of finite elements in partial differential equations, Symposium proceedings, pp. 195–212 (1974)

  18. Mattsson, K.: Summation by parts operators for finite difference approximations of second-derivatives with variable coefficients. J. Sci. Comput. 51, 650–682 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mattsson, K., Almquist, M.: A solution to the stability issues with block norm summation by parts operators. J. Comput. Phys. 253, 418–442 (2013)

    Article  MathSciNet  Google Scholar 

  20. Mattsson, K., Carpenter, M.H.: Stable and accurate interpolation operators for high-order multiblock finite difference methods. SIAM J. Sci. Comput. 32, 2298–2320 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mattsson, K., Ham, F., Iaccarino, G.: Stable and accurate wave-propagation in discontinuous media. J. Comput. Phys. 227, 8753–8767 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mattsson, K., Ham, F., Iaccarino, G.: Stable boundary treatment for the wave equation on second-order form. J. Sci. Comput. 41, 366–383 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199, 503–540 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mattsson, K., Svärd, M., Shoeybi, M.: Stable and accurate schemes for the compressible Navier–Stokes equations. J. Comput. Phys. 227, 2293–2316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nissen, A., Kormann, K., Grandin, M., Virta, K.: Stable difference methods for block-oriented adaptive grids. J. Sci. Comput 65, 486–511 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nissen, A., Kreiss, G., Gerritsen, M.: Stability at non-conforming grid interfaces for a high order discretization of the Schrödinger equation. J. Sci. Comput. 53, 528–551 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Petersson, N.A., Sjögreen, B.: Stable grid refinement and singular source discretization for seismic wave simulations. Commun. Comput. Phys. 8, 1074–1110 (2010)

    Google Scholar 

  28. Strand, B.: Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110, 47–67 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Svärd, M.: On coordinate transformations for summation-by-parts operators. J. Sci. Comput. 20, 29–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  MathSciNet  Google Scholar 

  31. Virta, K., Mattsson, K.: Acoustic wave propagation in complicated geometries and heterogeneous media. J. Sci. Comput. 61, 90–118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, S., Kreiss, G.: Convergence of summation-by-parts finite difference methods for the wave equation. arXiv:1503.08926v2 [math.NA]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyang Wang.

Appendices

Appendix 1

We use L, \(R^1\) and \(R^2\) as subscripts or superscripts to distinguish variables in the left, bottom-right and top-right blocks in the mesh shown in Fig. 2a. The grid functions u, \(v_1\) and \(v_2\) are the numerical solution vectors in \(\varOmega _L\), \(\varOmega _{R^1}\) and \(\varOmega _{R^2}\), respectively. The mesh blocks are non-conforming, and the grid interfaces can be non-conforming as well. Furthermore, there is no strict restriction on the mesh refinement ratio.

1.1 Semi-discretization

In the following, we construct the penalty terms for the numerical treatment of the T-junction interface conditions. The penalty terms for the outer boundaries are omitted. The semi-discretized equation reads

$$\begin{aligned} \begin{aligned} u_{tt}&=\varvec{D_{2xL}+D_{2yL}}u+SAT_{u1}+SAT_{u2}+SAT_{\partial u}, \\ \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}_{tt}&=\varvec{\begin{pmatrix} D_{2xR^1}+D_{2yR^1} &{}\, \\ \,&{}\quad D_{2xR^2}+D_{2yR^2} \end{pmatrix}}\begin{pmatrix} {v_1} \\ {v_2} \end{pmatrix}+SAT_{v1}+SAT_{v2}+SAT_{\partial v}, \end{aligned} \end{aligned}$$
(20)

where

$$\begin{aligned} \begin{aligned}&SAT_{u1}=\frac{1}{2}\varvec{H_{xL}^{-1}S_{xL}^T}\left( \varvec{E_{0L}}u- \varvec{I_{R2L}}\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \right) , \\&SAT_{u2}=-\tau \varvec{H_{xL}^{-1}}\left( \varvec{E_{0L}}u- \varvec{I_{R2L}}\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \right) , \\&SAT_{\partial u}=-\frac{1}{2}\varvec{H_{xL}^{-1}}\left( \varvec{E_{0L}S_{xL}}u-\varvec{I_{R2L}} \begin{pmatrix} \varvec{S_{xR^1}} &{}\, \\ \,&{}\quad \varvec{S_{xR^2}} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) , \\&\varvec{I_{R2L}}=(E_{0L}\otimes P_{g2f}^L) \varvec{I_{v_1v_2}^u} \begin{pmatrix} E_{LR^1}\otimes P_{f2g}^{R^1} &{}\, \\ \,&{}\quad E_{LR^2}\otimes P_{f2g}^{R^2} \end{pmatrix}, \end{aligned} \end{aligned}$$
(21)

and

$$\begin{aligned} \begin{aligned}&SAT_{v1}=-\frac{1}{2}\begin{pmatrix} \varvec{H_{xR^1}^{-1}S_{xR^1}^T} &{} \\ &{} \varvec{H_{xR^2}^{-1}S_{xR^2}^T} \end{pmatrix}\left( \begin{pmatrix} \varvec{E_{0R^1}} &{}\, \\ \,&{}\quad \varvec{E_{0R^2}} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} - \varvec{I_{L2R}}u \right) , \\&SAT_{v2}=-\tau \begin{pmatrix} \varvec{H_{xR^1}^{-1}} &{} \\ &{} \varvec{H_{xR^2}^{-1}} \end{pmatrix}\left( \begin{pmatrix} \varvec{E_{0R^1}} &{}\, \\ \,&{}\quad \varvec{E_{0R^2}} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} - \varvec{I_{L2R}}u \right) , \\&SAT_{\partial v}=\frac{1}{2}\begin{pmatrix} \varvec{H_{xR^1}^{-1}} &{}\, \\ \,&{}\quad \varvec{H_{xR^2}^{-1}} \end{pmatrix}\left( \begin{pmatrix} \varvec{E_{0R^1}S_{xR^1}} &{}\, \\ \,&{}\quad \varvec{E_{0R^2}S_{xR^2}} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} - \varvec{I_{L2R}S_{xL}}u \right) , \\&\varvec{I_{L2R}}=\begin{pmatrix} E_{R^1L}\otimes P_{g2f}^{R^1} &{}\, \\ \,&{}\quad E_{R^2L}\otimes P_{g2f}^{R^2} \end{pmatrix} \varvec{I_u^{v_1v_2}} (E_{0L}\otimes P_{f2g}^L). \end{aligned} \end{aligned}$$
(22)

The elements in the matrices \(\varvec{I_{v_1v_2}^u}\) and \(\varvec{I_u^{v_1v_2}}\) are either zero or one. These two matrices are used to pick up the solution along the interface and put it in the right place for coupling.

1.2 Energy Analysis

We note that there is a similarity between the semi-discretization (20) and (3). Comparing the penalty terms in (21) with the penalty terms in (4), the difference is that \(E_{LR}\otimes I_{F2C}\) in (4) is replaced by \(\varvec{I_{R2L}}\) in (21). Similarly, \(E_{RL}\otimes I_{C2F}\) in (5) is replaced by \(\varvec{I_{L2R}}\) in (22). As a consequence, the energy analysis for (20) follows in the same way as in Theorem 1, if the corresponding norm-compatible condition (Definition 2) and the norm-contracting condition (Definition 3) are satisfied.

For the T-junction interface in consideration, the norm-compatible condition is

$$\begin{aligned} \begin{pmatrix} H_{yR^1}P_{g2f}^{R^1} &{}\, \\ \,&{}\quad H_{yR^2}P_{g2f}^{R^2} \end{pmatrix}P_{f2g}^L=\left( H_{yL}P_{g2f}^L\begin{pmatrix} P_{f2g}^{R^1} &{} \,\\ \,&{}\quad P_{f2g}^{R^2} \end{pmatrix}\right) ^T, \end{aligned}$$
(23)

and the norm-contracting condition is that the matrices

$$\begin{aligned} \begin{aligned}&H_{yL}\left( I_{yL}-P_{g2f}^L\begin{pmatrix} P_{f2g}^{R^1} &{}\, \\ \,&{}\quad P_{f2g}^{R^2} \end{pmatrix}\begin{pmatrix} P_{g2f}^{R^1} &{}\, \\ \,&{}\quad P_{g2f}^{R^2} \end{pmatrix}P_{f2g}^L\right) ,\\&\begin{pmatrix} H_{yR^1} &{}\, \\ \,&{}\quad H_{yR^2} \end{pmatrix}\left( \begin{pmatrix} I_{yR^1} &{}\, \\ \,&{}\quad I_{yR^2} \end{pmatrix}-\begin{pmatrix} P_{g2f}^{R^1} &{}\, \\ \,&{}\quad P_{g2f}^{R^2} \end{pmatrix}P_{f2g}^L P_{g2f}^L\begin{pmatrix} P_{f2g}^{R^1} &{}\, \\ \,&{}\quad P_{f2g}^{R^2} \end{pmatrix}\right) \end{aligned} \end{aligned}$$
(24)

are symmetric positive semi-definite. It is straightforward to prove (23) by using (15) in Definition 4, so (23) is satisfied for all the projection operators in [14]. However, the validation of the norm-contracting property relies on eigenvalue analyse. We have performed an eigenvalue analysis for the particular mesh setting used in Sect. 5.2.2, and found that the norm-contracting condition is satisfied for the second and fourth order accurate cases. The validation remains with a refined mesh.

Appendix 2

We give a detailed description for the construction of the two grids used in the efficiency studies in Sect. 5.3. A general block \(\mathcal {B}_i\) of a decomposition has four boundaries defined by the parametrized curves

$$\begin{aligned} \begin{aligned}&\mathcal {C}_{iS} = \left( x_{iS}(\xi ),y_{iS}(\xi )\right) ,\quad \mathcal {C}_{iN} = \left( x_{iN}(\xi ),y_{iN}(\xi )\right) ,\\&\mathcal {C}_{iW} = \left( x_{iW}(\eta ),y_{iW}(\eta )\right) , \quad \mathcal {C}_{iE} = \left( x_{iE}(\eta ),y_{iE}(\eta )\right) , \end{aligned} \end{aligned}$$

where \(0\le \xi \le 1, 0\le \eta \le 1\). \(\mathcal {C}_{iS}\) and \(\mathcal {C}_{iN}\) describe one pair of opposing sides and \(\mathcal {C}_{iW}\) and \(\mathcal {C}_{iE}\) the other pair. Let \(\mathcal {P}_{iSW}\) denote the point of intersection between the curves \(\mathcal {C}_{iS}\) and \(\mathcal {C}_{iW}\) e.t.c. A bijection \((x,y) = \mathcal {T}_i(\xi ,\eta )\) from the unit square \(\mathcal {S} = [0,1]^2\) to the block \(\mathcal {B}_i\) of the decomposition is given by the transfinite interpolation [12] as

$$\begin{aligned} \mathcal {T}_i(\xi ,\eta )= & {} (1-\eta ) \mathcal {C}_{iS} + \eta \mathcal {C}_{iN} + (1-\xi ) \mathcal {C}_{iW} + \xi \mathcal {C}_{iE}\\&-\,\xi \eta \mathcal {P}_{iNE} - \xi (1-\eta ) \mathcal {P}_{iSE} - \eta (1-\xi ) \mathcal {P}_{iNW} - (1-\xi )(1-\eta )\mathcal {P}_{iSW}. \end{aligned}$$

The unit square \(\mathcal {S}\) is discretized by the points

$$\begin{aligned} \begin{aligned}&\xi _j = j h_{\xi }, h_{\xi } = 1/(N_{i\xi }-1), \quad j = 0, \dots , N_{i\xi }-1,\\&\eta _k = k h_{\eta }, h_{\eta } = 1/(N_{i\eta }-1), \quad k = 0, \dots , N_{i\eta }-1, \end{aligned} \end{aligned}$$

where \(N_{i\xi }\) and \(N_{i\eta }\) are integers determining the number of grid points in the spatial directions of the discretization of the block \(\mathcal {B}_i\). The corresponding grid points are computed as

$$\begin{aligned} (x_j,y_k) = \mathcal {T}_i(\xi _j,\eta _k). \end{aligned}$$

We now give details on how the grids in \(\mathcal {D}_1 - \mathcal {D}_2\) are constructed. \(\mathcal {D}_1\) represents a circular cavity in an infinite surrounding medium. We construct the computational grid such that the cavity of radius a is centered inside a square of side 2D. This is done by introducing four blocks \(\mathcal {B}^{(1)}_1\)\(\mathcal {B}^{(1)}_4\). The bounding curves of block \(\mathcal {B}^{(1)}_1\) are given by

$$\begin{aligned} \begin{aligned}&\mathcal {C}^{(1)}_{1S} = a\left( \xi \sqrt{2} - 1/\sqrt{2}, \sqrt{1-(\xi \sqrt{2} - 1/\sqrt{2})^2}\right) ,\\&\mathcal {C}^{(1)}_{1N} = \left( D, 2D \xi - D\right) ,\\&\mathcal {C}^{(1)}_{1W} = \left( -\eta (D-a/\sqrt{2}) - a/\sqrt{2}, \eta (D-a/\sqrt{2}) + a/\sqrt{2}\right) ,\\&\mathcal {C}^{(1)}_{1E} = \left( \eta (D-a/\sqrt{2}) + a/\sqrt{2}, \eta (D-a/\sqrt{2}) + a/\sqrt{2}\right) . \end{aligned} \end{aligned}$$

The bounding curves of the remaining blocks \(\mathcal {B}^{(1)}_2\)\(\mathcal {B}^{(1)}_4\) that constitute the square with the cavity at the center are obtained via rotation by a factor \(\pi /2\),

$$\begin{aligned} \mathcal {C}^{(1)}_{ij} = \mathcal {C}^{(1)}_{i-1j} \begin{bmatrix} \cos {\pi /2}&\quad -\sin {\pi /2}\\ \sin {\pi /2}&\quad \cos {\pi /2}\end{bmatrix},\quad i = 2,3,4,\ \ j = S,N,W,E. \end{aligned}$$

The domain \(\mathcal {D}_1\) can now be represented by attaching the grid representing the cavity to one or more Cartesian blocks.

The circular inclusion of \(\mathcal {D}_2\) is decomposed into five blocks \(\mathcal {B}^{(2)}_1\)\(\mathcal {B}^{(2)}_5\). The block \(\mathcal {B}^{(2)}_1\) is a square at the center of the circular inclusion with corners at the points \((\pm ad,\pm ad), 0 < d < \sqrt{2}/2\) defined by the bounding curves,

$$\begin{aligned} \begin{aligned}&\mathcal {C}^{(2)}_{1S} = a\left( 2d \xi -d, -d\right) ,\ \mathcal {C}^{(2)}_{1N} = a\left( 2d\xi -d, d\right) ,\\&\mathcal {C}^{(2)}_{1W} = a\left( -d, 2d\eta -d\right) ,\ \mathcal {C}^{(2)}_{1E} = a\left( d, 2d\eta -d\right) . \end{aligned} \end{aligned}$$

Here a is the radius of the circular inclusion. The block \(\mathcal {B}^{(2)}_2\) is defined by its bounding curves,

$$\begin{aligned} \begin{aligned}&\mathcal {C}^{(2)}_{2S} = \mathcal {C}^{(2)}_{1N},\\&\mathcal {C}^{(2)}_{2N} = \mathcal {C}^{(1)}_{1S},\\&\mathcal {C}^{(2)}_{2W} = a\left( -\eta (\sqrt{2}/2-d)-d, \eta (\sqrt{2}/2-d) + d\right) ,\\&\mathcal {C}^{(2)}_{2E} = a\left( \eta (\sqrt{2}/2-d) + d, \eta (\sqrt{2}/2-d) + d\right) . \end{aligned} \end{aligned}$$

The bounding curves of the remaining blocks \(\mathcal {B}^{(2)}_3\)\(\mathcal {B}^{(2)}_5\) that constitute the circular inclusion of \(\mathcal {D}_2\) are obtained via rotations by a factor \(\pi /2\) as in (6). The inclusion is then centered inside a square of side 2D by attaching it to the blocks \(\mathcal {B}^{(1)}_1\)\(\mathcal {B}^{(1)}_4\) above. The circular inclusion is now the union of the nine blocks \(\mathcal {B}^{(1)}_1\)\(\mathcal {B}^{(1)}_4\) and \(\mathcal {B}^{(2)}_1\)\(\mathcal {B}^{(2)}_5\). The domain \(\mathcal {D}_2\) can now be represented by attaching the grid representing the inclusion to one or more Cartesian blocks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Virta, K. & Kreiss, G. High Order Finite Difference Methods for the Wave Equation with Non-conforming Grid Interfaces. J Sci Comput 68, 1002–1028 (2016). https://doi.org/10.1007/s10915-016-0165-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0165-1

Keywords

Mathematics Subject Classification

Navigation