Skip to main content
Log in

Two-Level Coupled and Decoupled Parallel Correction Methods for Stationary Incompressible Magnetohydrodynamics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose two-level coupled correction and decoupled parallel correction finite element methods for solving the stationary magnetohydrodynamics (MHD) equations. We prove the error estimates for the methods which show that if coarse mesh size \((H)\) and fine mesh size \((h)\) satisfy the relation \(H=O(\sqrt{h})\), the methods provide optimal convergence rates. Further, we study the dependence of the errors of the methods on parameters. Numerically, investigations for 2D/3D Hartmann flows with different physical parameters are conducted to validate theoretical analyses, which show the efficiency of the methods to solve the MHD problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badia, S., Codina, R.: A nodal-based finite element approximation of the maxwell problem suitable for singular solutions. SIAM J. Numer. Anal. 50, 398–417 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Badia, S., Codina, R., Planas, R.: On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics. J. Comput. Phys. 234, 399–416 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Salah, N., Soulaimani, A., Habashi, W.: A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 190, 5867–5892 (2001)

    Article  MATH  Google Scholar 

  4. Bonito, A., Guermond, J.: Approximation of the eigenvalue problem for the time harmonic maxwell system by continuous lagrange finite elements. Math. Comput. 80, 1887–1910 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cao, C., Wu, J.: Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 248, 2263–2274 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Codina, R., Silva, N.: Stabilized finite element approximation of the stationary magnetohydrodynamics equations. Comput. Mech. 38, 344–355 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gerbeau, J.: Probl\(\grave{\text{ e }}\)mes math\(\acute{\text{ e }}\)matiques et num\(\acute{\text{ e }}\)riques pos\(\acute{\text{ e }}\)s par la mod\(\acute{\text{ e }}\)lisation de l’\(\acute{\text{ e }}\)lectrolyse de l’aluminium, Ph.D. Thesis, \(\acute{\text{ E }}\)cole Nationale des Ponts et Chauss\(\acute{\text{ e }}\)es (1998)

  8. Gerbeau, J.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83–111 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gerbeau, J., Le Bris, C., Lelievre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  10. Girault, V., Lions, J.L.: Two-grid finite element scheme for the steady Navier-Stokes Equations in polyhedra. Portugal. Math. 58, 25–57 (2001)

  11. Girault, V., Lions, J.L.: Two-grid finite element scheme for the transient Navier-Stokes problem. Math. Model. Numer. Anal. 35, 945–980 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Springer, NewYork (1986)

    Book  MATH  Google Scholar 

  13. Greif, C., Li, D., Schötzau, D., Wei, X.: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 199, 2840–2855 (2010)

  14. Gunzburger, M.D., Meir, A.J., Peterson, J.P.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comput. 56, 523–563 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hasler, U., Schneebeli, A., Schötzau, D.: Mixed finite element approximation of incompressible MHD problems based on weighted regularization. Appl. Numer. Math. 51, 19–45 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. He, C., Wang, Y.: On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 238, 1–17 (2007)

    Article  MATH  Google Scholar 

  17. He, Y.: Unconditioanal convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations. IMA J Numer Anal (2014). doi:10.1093/imanum/dru015

  18. He, Y.: Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 41, 1263–1285 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. He, Y., Li, K.: Two-level stabilized finite element methods for the steady Navier–Stokes problem. Computing 74, 337–351 (2005)

  20. He, Y., Wang, A.: A simplified two-level for the steady Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 197, 1568–1576 (2008)

    Article  MATH  Google Scholar 

  21. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularityof solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Houston, P., Schötzau, D., Wei, X.: A mixed DG method for linearized incompressible magnetohydrodynamics. J. Sci. Comput. 40, 281–314 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Layton, W.: A two level discretization method for the Navier–Stokes equations. Comput. Math. Appl. 5, 33–38 (1993)

    Article  MathSciNet  Google Scholar 

  24. Layton, W., Leferink, H.: Two-level Picard and modified Picard methods for the Navier–Stokes equations. Appl. Math. Comput. 69, 263–274 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Layton, W., Lenferink, H., Peterson, J.: A two-level Newton finite element algorithm for approximating electrically conducting incompressible fluid flows. Comput. Math. Appl. 28, 21–31 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Layton, W., Meir, A.J., Schmidtz, P.G.: A two-level discretization method for the stationary MHD equations. Electron. Trans. Numer. Anal. 6, 198–210 (1997)

    MATH  MathSciNet  Google Scholar 

  27. Lifschitz, A.: Magnetohydrodynamics and Spectral Theory. Kluwer, Dordrecht (1989)

    Book  MATH  Google Scholar 

  28. Meir, A.J., Schmidt, P.G.: Analysis and numerical approximation of a stationary MHD flow problem with nonideal boundary. SIAM J. Numer. Anal. 36, 1304–1332 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Priest, E., Hood, A.: Advances in Solar System Magnetohydrodynamics. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  30. Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. ESAIM. Math. Model. Numer. Anal. 42, 1065–1087 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schonbek, M., Schonbek, T., Söli, E.: Large-time behaviour of solutions to the magnetohydrodynamics equations. Math. Ann. 304, 717–756 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schötzau, D.: Mixed finite element methods for stationary incompressible magnetohydrodynamics. Numer. Math. 96, 771–800 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  34. Southwell, R.: Stress calculation in frameworks by the method of systematic relaxation of constraints. I.II. Proc. Roy. Soc. Lond. Ser. A 15, 56–95 (1935)

    Article  Google Scholar 

  35. Xu, J.: A novel two two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This study is subsidized by the NSFs of China (No. 11271298, No. 11371289 and No. 11371289). The authors would like to thank the editor and referees for their valuable comments and suggestions which helped us improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinnian He.

Appendix

Appendix

Proof of Theorem 1

We define a function space

$$\begin{aligned} Z = \left\{ ({\mathbf {u}}, {\mathbf {b}}) \in {\mathbf {H}}^{1}_{0}(\varOmega ) \times {\mathbf {H}}^{1}_{n}(\varOmega ): B(q;{\mathbf {u}}, {\mathbf {b}})=0, \forall q \in L^{2}_{0}(\varOmega )\right\} . \end{aligned}$$

For \(\forall ({\mathbf {w}},{\mathbf {d}}) \in Z,\) the linear equations: solving \({\mathbf {u}} \in {\mathbf {H}}^{1}_{0}(\varOmega ), {\mathbf {b}} \in {\mathbf {H}}^{1}_{n}(\varOmega )\) and \(p \in L^{2}_{0}(\varOmega )\) from

$$\begin{aligned}&A({\mathbf {u}}, {\mathbf {b}}; {\mathbf {v}}, {\mathbf {c}})+C({\mathbf {w}}, {\mathbf {d}}; {\mathbf {u}}, {\mathbf {b}}; {\mathbf {v}}, {\mathbf {c}})+B(p; {\mathbf {v}}, {\mathbf {c}})-B(q; {\mathbf {u}},{\mathbf {b}})= \langle {\mathbf {F}}, ({\mathbf {v}}, {\mathbf {c}})\rangle , \end{aligned}$$

\( \forall ({\mathbf {v}}, {\mathbf {c}}) \in \mathbf {H}_{0}^{1}(\varOmega ) \times \mathbf {H}_{n}^{1}{(\varOmega )}, q \in L_{0}^{2}(\varOmega ),\) admit a unique solution \(({\mathbf {u}}, {\mathbf {b}} ) \in Z\) and \(p \in L^{2}_{0}(\varOmega )\) satisfying

$$\begin{aligned} ||({\mathbf {u}}, {\mathbf {b}})||_{1}\le \frac{||{\mathbf {F}}||_{-1}}{\underline{\nu }}. \end{aligned}$$

For details, see Part I. Corollary 4.1 in [12]. We define a map

$$\begin{aligned} \Phi : Z\rightarrow Z, \quad ({\mathbf {w}}, {\mathbf {d}})\mapsto ({\mathbf {u}}, {\mathbf {b}}). \end{aligned}$$

Supposing \(\Phi ({\mathbf {w}}_{i}, {\mathbf {d}}_{i})=({\mathbf {u}}_{i}, {\mathbf {b}}_{i}), i=1,2\) and using (9), (10), we have

$$\begin{aligned}&\underline{\nu }||\Phi ({\mathbf {w}}_{1}, {\mathbf {d}}_{1})- \Phi ({\mathbf {w}}_{2}, {\mathbf {d}}_{2})||_{1}^{2}=\underline{\nu }||({\mathbf {u}}_{1}- {\mathbf {u}}_{2}, {\mathbf {b}}_{1}- {\mathbf {b}}_{2})||_{1}^{2}\\&\quad \le A({\mathbf {u}}_{1}-{\mathbf {u}}_{2}, {\mathbf {b}}_{1}- {\mathbf {b}}_{2}; {\mathbf {u}}_{1}-{\mathbf {u}}_{2}, {\mathbf {b}}_{1}-{\mathbf {b}}_{2})\\&\quad =-C({\mathbf {w}}_{1}-{\mathbf {w}}_{2}, {\mathbf {d}}_{1}-{\mathbf {d}}_{2}; {\mathbf {u}}_{2}, {\mathbf {b}}_{2}; {\mathbf {u}}_{1}-{\mathbf {u}}_{2}, {\mathbf {b}}_{1}- {\mathbf {b}}_{2} ) \\&\quad \le \frac{N ||{\mathbf {F}}||_{-1} }{\underline{\nu }}||({\mathbf {w}}_{1}-{\mathbf {w}}_{2}, {\mathbf {d}}_{1}-{\mathbf {d}}_{2})||_{1} ||({\mathbf {u}}_{1}-{\mathbf {u}}_{2}, {\mathbf {b}}_{1}-{\mathbf {b}}_{2})||_{1}. \end{aligned}$$

Thus,

$$\begin{aligned} ||\Phi ({\mathbf {w}}_{1}, {\mathbf {d}}_{1})- \Phi ({\mathbf {w}}_{2}, {\mathbf {d}}_{2})||_{1}\le \frac{N ||{\mathbf {F}}||_{-1}}{\underline{\nu }^{2}}||({\mathbf {w}}_{1}-{\mathbf {w}}_{2}, {\mathbf {d}}_{1}-{\mathbf {d}}_{2})||_{1}. \end{aligned}$$

By the assumption in the Theorem, we know the map \(\Phi \) is a contraction map from \(Z\) to \(Z.\) Using Banach contraction mapping principle, the map \(\Phi \) admits one unique fixed point in \(Z,\) which is the unique solution of (4). \(\square \)

Proof of Theorem 3

The existence, uniqueness and \(H^{1}\) stability of discrete solution can be proved similar to Theorem 1. We only prove the error estimate (24).

Let \({\mathbf {e}}_{u}= R({\mathbf {u}},p)- {\mathbf {u}}_{h}, {\mathbf {e}}_{b}= \varLambda {\mathbf {b}}-{\mathbf {b}}_{h}, e_{p}= Q({\mathbf {u}},p)-p.\) The problem (4) subtracting problem (18) gives the error equation:

$$\begin{aligned}&A({\mathbf {u}}-{\mathbf {u}}_{h}, {\mathbf {b}}- {\mathbf {b}}_{h}; {\mathbf {v}}_{h},{\mathbf {c}}_{h})+C({\mathbf {u}}-{\mathbf {u}}_{h}, {\mathbf {b}}-{\mathbf {b}}_{h}; {\mathbf {u}}, {\mathbf {b}}; {\mathbf {v}}_{h},{\mathbf {c}}_{h})\nonumber \\&\quad +C({\mathbf {u}}_{h},{\mathbf {b}}_{h}; {\mathbf {u}}-{\mathbf {u}}_{h},{\mathbf {b}}-{\mathbf {b}}_{h}; {\mathbf {v}}_{h}, {\mathbf {c}}_{h}) \nonumber \\&\quad +B(p- p_{h};{\mathbf {v}}_{h}, {\mathbf {c}}_{h})- B(q_{h}; {\mathbf {u}}- {\mathbf {u}}_{h},{\mathbf {b}}-{\mathbf {b}}_{h})=0, \end{aligned}$$
(48)

for all \(({\mathbf {v}}_{h}, q_{h}, {\mathbf {c}}_{h}) \in V_{h}\times Q_{h} \times C_{h}.\) By this error equation, we have for all \(({\mathbf {v}}_{h}, q_{h}, {\mathbf {c}}_{h}) \in V_{h}\times Q_{h} \times C_{h},\)

$$\begin{aligned}&A({\mathbf {e}}_{u}, {\mathbf {e}}_{b}; {\mathbf {v}}_{h}, {\mathbf {c}}_{h}) +C({\mathbf {e}}_{u}, {\mathbf {e}}_{b}; {\mathbf {u}},{\mathbf {b}}; {\mathbf {v}}_{h}, {\mathbf {c}}_{h}) +C({\mathbf {u}}_{h}, {\mathbf {b}}_{h}; {\mathbf {e}}_{u}, {\mathbf {e}}_{b}; {\mathbf {v}}_{h}, {\mathbf {c}}_{h})+B(e_{p}; {\mathbf {v}}_{h}, {\mathbf {c}}_{h})\\&\quad - B(q_{h}; {\mathbf {e}}_{u}, {\mathbf {e}}_{b})\\&\quad = C(R({\mathbf {u}}, p)-{\mathbf {u}}, \varLambda {\mathbf {b}}-{\mathbf {b}}; {\mathbf {u}}, {\mathbf {b}}; {\mathbf {v}}_{h},{\mathbf {c}}_{h})+C({\mathbf {u}}_{h}, {\mathbf {b}}_{h};R({\mathbf {u}}, p)-{\mathbf {u}}, \varLambda {\mathbf {b}}-{\mathbf {b}}; {\mathbf {v}}_{h}, {\mathbf {c}}_{h}). \end{aligned}$$

Taking \({\mathbf {v}}_{h}= {\mathbf {e}}_{u}, {\mathbf {c}}_{h}={\mathbf {e}}_{b}, q_{h}=e_{p},\) by (11) we obtain

$$\begin{aligned}&A({\mathbf {e}}_{u}, {\mathbf {e}}_{b}; {\mathbf {e}}_{u}, {\mathbf {e}}_{b}) + C({\mathbf {e}}_{u}, {\mathbf {e}}_{b}; {\mathbf {u}}, {\mathbf {b}};{\mathbf {e}}_{u},{\mathbf {e}}_{b}) \nonumber \\&\quad = C(R({\mathbf {u}}, p)-{\mathbf {u}}, \varLambda {\mathbf {b}}-{\mathbf {b}}; {\mathbf {u}}, {\mathbf {b}}; {\mathbf {e}}_{u},{\mathbf {e}}_{b})+C({\mathbf {u}}_{h}, {\mathbf {b}}_{h};R({\mathbf {u}}, p)-{\mathbf {u}}, \varLambda {\mathbf {b}}-{\mathbf {b}};{\mathbf {e}}_{u}, {\mathbf {e}}_{b}).\nonumber \\ \end{aligned}$$
(49)

Using H \(\ddot{o}\) lder inequality, Sobolev inequalities and inverse inequality, the right hand side of (49) can be estimated as follows:

$$\begin{aligned} RHS&\le c ||{\mathbf {u}}- R({\mathbf {u}}, p) ||_{0}\left( ||{\mathbf {u}}||_{2} ||\nabla {\mathbf {e}}_{u}||_{0} + ||{\mathbf {u}}_{h}||_{L^{\infty }} ||\nabla {\mathbf {e}}_{u}||_{0} + ||\nabla {\mathbf {u}}_{h}||_{0} ||{\mathbf {e}}_{u}||_{L^{\infty }}\right. \nonumber \\&\quad \left. +S||{\mathbf {b}}_{h}||_{L^{\infty }} ||{\mathbf {e}}_{b}||_{{\mathbf {H}}^{1}_{n}} \right) + c ||{\mathbf {b}}- \varLambda {\mathbf {b}} ||_{0}\left( S||{\mathbf {b}}||_{2} ||\nabla {\mathbf {e}}_{u}||_{0} + S||{\mathbf {e}}_{b}||_{{\mathbf {H}}^{1}_{n}} || {\mathbf {u}}||_{2}\right. \nonumber \\&\left. \quad + S ||{\mathbf {b}}_{h}||_{L^{\infty }}||\nabla {\mathbf {e}}_{u}||_{0} +S||{\mathbf {e}}_{u}||_{L^{\infty }} ||{\mathbf {b}}_{h}||_{{\mathbf {H}}^{1}_{n}} \right) \nonumber \\&\le c ||{\mathbf {u}}\!-\! R({\mathbf {u}}, p) ||_{0}\left( ||{\mathbf {u}}||_{2} ||\nabla {\mathbf {e}}_{u}||_{0} \!+\! h^{-1/2}||\nabla {\mathbf {u}}_{h}||_{0} ||\nabla {\mathbf {e}}_{u}||_{0} \!+\!Sh^{-1/2}||{\mathbf {b}}_{h}||_{{\mathbf {H}}^{1}_{n}} ||{\mathbf {e}}_{b}||_{{\mathbf {H}}^{1}_{n}} \!\right) \nonumber \\&\quad + c ||{\mathbf {b}}- \varLambda {\mathbf {b}} ||_{0}\left( S||{\mathbf {b}}||_{2} ||\nabla {\mathbf {e}}_{u}||_{0} + S||{\mathbf {e}}_{b}||_{{\mathbf {H}}^{1}_{n}} || {\mathbf {u}}||_{2} + Sh^{-1/2} ||{\mathbf {b}}_{h}||_{{\mathbf {H}}^{1}_{n}}||\nabla {\mathbf {e}}_{u}||_{0} \right) \nonumber \\&\le ch^{-1/2} || ({\mathbf {e}}_{u}, {\mathbf {e}}_{b})||_{1} ||({\mathbf {u}}- R({\mathbf {u}}, p), {\mathbf {b}}- \varLambda {\mathbf {b}}) ||_{0} \left( ||({\mathbf {u}}, {\mathbf {b}})||_{2}+||({\mathbf {u}}_{h}, {\mathbf {b}}_{h})||_{1} \right) . \end{aligned}$$
(50)

By (9), (10) and (14), the left hand side can be estimated as follows:

$$\begin{aligned} LHS\ge \underline{\nu } ||({\mathbf {e}}_{u}, {\mathbf {e}}_{b})||_{1}^{2}-N ||({\mathbf {u}}, {\mathbf {b}})||_{1}||({\mathbf {e}}_{u}, {\mathbf {e}}_{b})||_{1}^{2} \ge \underline{\nu } (1-\sigma ) ||({\mathbf {e}}_{u}, {\mathbf {e}}_{b})||_{1}^{2}. \end{aligned}$$
(51)

Combing (50) with (51), and using (20), (22), (23), (15), we get

$$\begin{aligned} \underline{\nu } (1\!-\!\sigma ) ||({\mathbf {e}}_{u}, {\mathbf {e}}_{b})||_{1}\le c_{S}h^{3/2}||{\mathbf {F}}||_{0}\left( \underline{\nu }^{-2}||{\mathbf {F}}||_{0} \!+\! \underline{\nu }^{-2}||{\mathbf {F}}||_{-1}\right) \le c_{S}h^{3/2}||{\mathbf {F}}||_{0}\left( 1 \!+\! \frac{||{\mathbf {F}}||_{0}}{||{\mathbf {F}}||_{-1}}\right) . \end{aligned}$$

Thus, we deduce that

$$\begin{aligned} \underline{\nu } ||({\mathbf {e}}_{u}, {\mathbf {e}}_{b})||_{1}\le c_{S}h ||{\mathbf {F}}||_{0}\left( 1 + \frac{||{\mathbf {F}}||_{0}}{||{\mathbf {F}}||_{-1}}\right) . \end{aligned}$$
(52)

Then, by triangle inequality and (22), (20), we obtain

$$\begin{aligned}&\underline{\nu } ||({\mathbf {u}}- {\mathbf {u}}_{h}, {\mathbf {b}}- {\mathbf {b}}_{h})||_{1} \le \underline{\nu } ||({\mathbf {u}}- R ({\mathbf {u}},p), {\mathbf {b}}- \varLambda {\mathbf {b}})||_{1} + \underline{\nu } ||({\mathbf {e}}_{u}, {\mathbf {e}}_{b})||_{1} \le C h. \end{aligned}$$
(53)

In the below, we deduce the \(L^{2}\) error estimate through superconvergence property of the Stokes projection and Maxwell projection, which allow us to avoid using duality technique. The right hand side of (49) can be rewritten as

$$\begin{aligned}&RHS= C(R({\mathbf {u}}, p)-{\mathbf {u}}, \varLambda {\mathbf {b}}-{\mathbf {b}}; {\mathbf {u}}, {\mathbf {b}}; {\mathbf {e}}_{u}, {\mathbf {e}}_{b}) +C(-{\mathbf {e}}_{u}, -{\mathbf {e}}_{b}; R({\mathbf {u}}, p)\!-\!{\mathbf {u}}, \varLambda {\mathbf {b}}\!-\!{\mathbf {b}}; {\mathbf {e}}_{u}, {\mathbf {e}}_{b})\\&\quad +C(R({\mathbf {u}}, p)-{\mathbf {u}}, \varLambda {\mathbf {b}}-{\mathbf {b}}; R({\mathbf {u}}, p)-{\mathbf {u}}, \varLambda {\mathbf {b}}-{\mathbf {b}}; {\mathbf {e}}_{u}, {\mathbf {e}}_{b})\\&\quad +C({\mathbf {u}}, {\mathbf {b}}; R({\mathbf {u}}, p)-{\mathbf {u}}, \varLambda {\mathbf {b}}-{\mathbf {b}}; {\mathbf {e}}_{u}, {\mathbf {e}}_{b}) \end{aligned}$$

Using (10), (12), (13), we have

$$\begin{aligned}&RHS \le c||({\mathbf {u}}- R({\mathbf {u}}, p), {\mathbf {b}}- \varLambda {\mathbf {b}}) ||_{0} ||({\mathbf {u}}, {\mathbf {b}})||_{2}|| ({\mathbf {e}}_{u}, {\mathbf {e}}_{b})||_{1}\nonumber \\&\quad +c ||({\mathbf {u}}- R({\mathbf {u}}, p), {\mathbf {b}}- \varLambda {\mathbf {b}}) ||_{1}|| ({\mathbf {e}}_{u}, {\mathbf {e}}_{b})||_{1}^{2} \nonumber \\&\quad +c ||({\mathbf {u}}- R({\mathbf {u}}, p), {\mathbf {b}}- \varLambda {\mathbf {b}}) ||_{1}^{2}|| ({\mathbf {e}}_{u}, {\mathbf {e}}_{b})||_{1}. \end{aligned}$$
(54)

Combing (51) with (54), and by (22), (20), (15) and (52), we derive that

$$\begin{aligned}&\underline{\nu } (1-\sigma ) ||({\mathbf {e}}_{u}, {\mathbf {e}}_{b})||_{1} \le c_{S}\left( \frac{3 ||{\mathbf {F}} ||_{0}}{||{\mathbf {F}} ||_{-1}} + \left( \frac{ ||{\mathbf {F}} ||_{0}}{||{\mathbf {F}} ||_{-1}}\right) ^{2}\right) ||{\mathbf {F}} ||_{0} h^{2} \le C h^{2}. \end{aligned}$$

Thus, by triangle inequality, (22), (20) and (15), we have

$$\begin{aligned}&\underline{\nu } (1-\sigma ) ||({\mathbf {u}}- {\mathbf {u}}_{h}, {\mathbf {b}}- {\mathbf {b}}_{h})||_{0} \le \underline{\nu } ||({\mathbf {u}}- R({\mathbf {u}}, p), {\mathbf {b}}- \varLambda {\mathbf {b}}) ||_{0}\nonumber \\&\quad +c \underline{\nu } (1-\sigma ) ||({\mathbf {e}}_{u}, {\mathbf {e}}_{b})||_{1} \le C h^{2}. \end{aligned}$$
(55)

Finally, through (48), (8) and (10), we drive that

$$\begin{aligned}&B(p_{h}-\pi _{2}p; {\mathbf {v}}_{h}, {\mathbf {c}}_{h}) \le \overline{\nu } ||({\mathbf {u}}- {\mathbf {u}}_{h}, {\mathbf {b}}- {\mathbf {b}}_{h})||_{1} ||({\mathbf {v}}_{h}, {\mathbf {c}}_{h})||_{1}\\&\quad +c ||({\mathbf {u}}- {\mathbf {u}}_{h}, {\mathbf {b}}- {\mathbf {b}}_{h})||_{1} ||({\mathbf {u}}, {\mathbf {b}})||_{1} ||({\mathbf {v}}_{h}, {\mathbf {c}}_{h})||_{1}\\&\quad + c ||({\mathbf {u}}_{h}, {\mathbf {b}}_{h})||_{1} ||({\mathbf {u}}- {\mathbf {u}}_{h}, {\mathbf {b}}- {\mathbf {b}}_{h})||_{1} ||({\mathbf {v}}_{h}, {\mathbf {c}}_{h})||_{1} +c ||p-\pi _{2}p||_{0} ||\nabla {\mathbf {v}}_{h}||_{0}. \end{aligned}$$

Then, using (16), (14), (23) and (53), we have

$$\begin{aligned} \hat{\beta } ||p_{h} - \pi _{2}p||_{0}&\le \overline{\nu } ||({\mathbf {u}} - {\mathbf {u}}_{h}, {\mathbf {b}}- {\mathbf {b}}_{h})||_{1} + c \underline{\nu }^{-2}||{\mathbf {F}}||_{-1}\underline{\nu } ||({\mathbf {u}}- {\mathbf {u}}_{h}, {\mathbf {b}}- {\mathbf {b}}_{h})||_{1}\\&\qquad +c ||p-\pi _{2}p||_{0}\\&\le \frac{\overline{\nu }}{\underline{\nu }} C h + C h+c ||p-\pi _{2}p||_{0}. \end{aligned}$$

Next, by triangle inequality and approximation property (17), we arrive at

$$\begin{aligned} \underline{\nu } \overline{\nu }^{-1}||p-p_{h}||_{0} \le C h. \end{aligned}$$
(56)

Finally, combining (53), (55) and (56) gives the error estimate (24). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GD., Zhang, Y. & He, Y. Two-Level Coupled and Decoupled Parallel Correction Methods for Stationary Incompressible Magnetohydrodynamics. J Sci Comput 65, 920–939 (2015). https://doi.org/10.1007/s10915-015-9994-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-9994-6

Keywords

Mathematics Subject Classification

Navigation