Skip to main content
Log in

Error Estimates of a Pressure-Stabilized Characteristics Finite Element Scheme for the Oseen Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Error estimates with the optimal convergence order are proved for a pressure-stabilized characteristics finite element scheme for the Oseen equations. The scheme is a combination of Lagrange–Galerkin finite element method and Brezzi–Pitkäranta’s stabilization method. The scheme maintains the advantages of both methods; (i) It is robust for convection-dominated problems and the system of linear equations to be solved is symmetric. (ii) Since the P1 finite element is employed for both velocity and pressure, the number of degrees of freedom is much smaller than that of other typical elements for the equations, e.g., P2/P1. Therefore, the scheme is efficient especially for three-dimensional problems. The theoretical convergence order is recognized by two- and three-dimensional numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baba, K., Tabata, M.: On a conservative upwind finite element scheme for convective diffusion equations. RAIRO Anal. Numer. 15, 3–25 (1981)

    MATH  MathSciNet  Google Scholar 

  2. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  3. Boukir, K., Maday, Y., Métivet, B., Razafindrakoto, E.: A high-order characteristics/finite element method for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 25, 1421–1454 (1997)

    Article  MATH  Google Scholar 

  4. Braack, M., Burman, E., John, V., Lube, G.: Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Eng. 196, 853–866 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)

    Book  MATH  Google Scholar 

  6. Brezzi, F., Douglas Jr, J.: Stabilized mixed methods for the Stokes problem. Numer. Math. 53, 225–235 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Hackbusch, W. (ed.) Efficient Solutions of Elliptic Systems, pp. 11–19. Vieweg, Wiesbaden (1984)

    Chapter  Google Scholar 

  8. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  10. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9, 77–84 (1975)

    MATH  Google Scholar 

  11. Douglas Jr, J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  13. Ewing, R.E., Russell, T.F.: Multistep Galerkin methods along characteristics for convection–diffusion problems. In: Vichnevetsky, R., Stepleman, R.S. (eds.) Advances in Computer Methods for Partial Differential Equations. IV, pp. 28–36. IMACS, New Brunswick (1981)

    Google Scholar 

  14. Ewing, R.E., Russell, T.F., Wheeler, M.F.: Simulation of miscible displacement using mixed methods and a modified method of characteristics. In: Proceedings of the Seventh Reservoir Simulation Symposium, Society of Petroleum Engineers of AIME. pp. 71–81 (1983)

  15. Franca, L.P., Frey, S.L.: Stabilized finite element methods: II. The incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 99, 209–233 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Franca, L.P., Stenberg, R.: Error analysis of some Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28, 1680–1697 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  18. Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 63, 97–112 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jia, H., Li, K., Liu, S.: Characteristic stabilized finite element method for the transient Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 199, 2996–3004 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  21. Notsu, H.: Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme. Transactions of the Japan Society for Computational. Eng. Sci. 2008, 20080032 (2008)

    Google Scholar 

  22. Notsu, H., Rui, H., Tabata, M.: Development and \(L^2\)-analysis of a single-step characteristics finite difference scheme of second order in time for convection-diffusion problems. J. Algorithms Comput. Technol. 7, 343–380 (2013)

    Article  MathSciNet  Google Scholar 

  23. Notsu, H., Tabata, M.: A combined finite element scheme with a pressure stabilization and a characteristic-curve method for the Navier–Stokes equations. Trans. Jpn Soc. Ind. Appl. Math. 18, 427–445 (2008). (in Japanese)

    Google Scholar 

  24. Notsu, H., Tabata, M.: A single-step characteristic-curve finite element scheme of second order in time for the incompressible Navier–Stokes equations. J. Sci. Comput. 38, 1–14 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Notsu, H., Tabata, M.: Error Estimates of a Pressure-Stabilized Characteristics Finite Element Scheme for the Navier–Stokes Equations. Waseda University, WIAS Discussion Paper, No. 2013-002 (2013). http://www.waseda.jp/wias/achievement/dp/data/dp2013002

  26. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38, 309–332 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pironneau, O.: Finite Element Methods for Fluids. Wiley, Chichester (1989)

    Google Scholar 

  28. Pironneau, O., Tabata, M.: Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type. Int. J. Numer. Methods Fluids 64, 1240–1253 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection–diffusion problems. Numer. Math. 92, 161–177 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  31. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  32. Süli, E.: Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations. Numer. Math. 53, 459–483 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tabata, M.: A finite element approximation corresponding to the upwind finite differencing. Mem. Numer. Math. 4, 47–63 (1977)

    MATH  MathSciNet  Google Scholar 

  34. Tabata, M., Tagami, D.: Error estimates for finite element approximations of drag and lift in nonstationary Navier–Stokes flows. Jpn. J. Ind. Appl. Math. 17, 371–389 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tezduyar, T.E., Mittal, S., Ray, S.E., Shih, R.: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Comput. Methods Appl. Mech. Eng. 95, 221–242 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are thankful to anonymous referees for their valuable comments. This work was supported by JSPS (the Japan Society for the Promotion of Science) under the Japanese-German Graduate Externship (Mathematical Fluid Dynamics) and by Waseda University under Project research, Spectral analysis and its application to the stability theory of the Navier–Stokes equations of Research Institute for Science and Engineering. The authors are indebted to JSPS also for Grant-in-Aid for Young Scientists (B), No. 26800091 to the first author and for Grants-in-Aid for Scientific Research (C), No. 25400212 and (S), No. 24224004 to the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Notsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Notsu, H., Tabata, M. Error Estimates of a Pressure-Stabilized Characteristics Finite Element Scheme for the Oseen Equations. J Sci Comput 65, 940–955 (2015). https://doi.org/10.1007/s10915-015-9992-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-9992-8

Keywords

Mathematics Subject Classification

Navigation