Skip to main content
Log in

Accurate Asymptotic Preserving Boundary Conditions for Kinetic Equations on Cartesian Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A simple second-order scheme on Cartesian grids for kinetic equations is presented, with emphasis on the accurate enforcement of wall boundary conditions on immersed bodies. This approach preserves at the discrete level the asymptotic limit towards Euler equations up to the wall, thus ensuring a smooth transition towards the hydrodynamic regime. We investigate exact, numerical and experimental test cases for the BGK model in order to assess the accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Alaia, A., Puppo, G.: A hybrid method for hydrodynamic-kinetic flow—part II—coupling of hydrodynamic and kinetic models. J. Comput. Phys. 231(16), 5217–5242 (2012)

    Article  MATH  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. IMACS J. 25(2–3), 151–167 (1997)

    Article  MATH  Google Scholar 

  3. Bennoune, M., Lemou, M., Mieussens, L.: Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier–Stokes asymptotics. J. Comput. Phys. 227(8), 3781–3803 (2008)

    Article  MATH  Google Scholar 

  4. Bernard, F., Iollo, A., Puppo, G.: A local velocity grid approach for BGK equation. Commun. Comput. Phys. 16(4), 956–982 (2014)

    Google Scholar 

  5. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954). doi:10.1103/PhysRev.94.511

    Article  MATH  Google Scholar 

  6. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford Engineering Science Series. Clarendon Press, Oxford (1994). http://books.google.it/books?id=Bya5QgAACAAJ

  7. Cabannes, H., Gatignol, R., Luol, L.S.: The Discrete Boltzmann Equation. Lecture Notes at University of California, Berkley, pp. 1–65 (1980)

  8. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer-Verlag GmbH, Berlin (1988)

    Book  MATH  Google Scholar 

  9. Chen, S., Xu, K., Lee, C., Cai, Q.: A unified gas kinetic scheme with moving mesh and velocity space adaptation. J. Comput. Phys. 231(20), 6643–6664 (2012)

    Article  Google Scholar 

  10. Chu, C.K.: Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids 8, 12–22 (1965)

    Article  Google Scholar 

  11. Cisternino, M., Weynans, L.: A parallel second order Cartesian method for elliptic interface problems. Commun. Comput. Phys. 12(5), 1562–1587 (2012). doi:10.4208/cicp.160311.090112a

    Google Scholar 

  12. Degond, P., Jin, S., Mieussens, L.: A smooth transition model between kinetic and hydrodynamic equations. J. Comput. Phys. 209(1), 665–694 (2005)

    Article  MATH  Google Scholar 

  13. Degond, P., Pareschi, L., Russo, G.: Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology. Springer, Berlin (2004)

    Book  Google Scholar 

  14. Dimarco, G., Pareschi, L.: Exponential Runge–Kutta methods for stiff kinetic equations. SIAM J. Numer. Anal. 49(5), 2057–2077 (2011)

    Article  MATH  Google Scholar 

  15. Fedkiw, R.P.: Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput. Phys. 175(1), 200–224 (2002)

    Article  MATH  Google Scholar 

  16. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)

    Article  MATH  Google Scholar 

  17. Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229(20), 7625–7648 (2010)

    Article  MATH  Google Scholar 

  18. Filbet, F., Yang, C.: An inverse Lax–Wendroff method for boundary conditions applied to Boltzmann type models. J. Comput. Phys. 245, 43–61 (2013)

    Article  Google Scholar 

  19. Gibou, F., Fedkiw, R.P., Cheng, L.T., Kang, M.: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176(1), 205–227 (2002)

    Article  MATH  Google Scholar 

  20. Goodman, F.O., Wachman, H.Y.: Dynamics of Gas–Surface Scattering. Academic Press, New York (1976)

    Google Scholar 

  21. Gorsse, Y., Iollo, A., Telib, H., Weynans, L.: A simple second order Cartesian scheme for compressible Euler flows. J. Comput. Phys. 231(23), 7780–7794 (2012)

    Article  MATH  Google Scholar 

  22. Ingram, D.M., Causon, D.M., Mingham, C.G.: Developments in Cartesian cut cell methods. Math. Comput. Simul. 61(3–6), 561–572 (2003)

    Article  MATH  Google Scholar 

  23. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MATH  Google Scholar 

  24. Jin, C., Xu, K.: A unified moving grid gas-kinetic method in Eulerian space for viscous flow computation. J. Comput. Phys. 222(1), 155–175 (2007)

    Article  MATH  Google Scholar 

  25. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21(2), 441–454 (1999)

    Article  MATH  Google Scholar 

  26. Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Rivista di Matematica della Università di Parma. Serie 7 3(2), 177–216 (2012)

  27. Karniadakis, G., Beskok, A., Aluru, N.: Microflows and Nanoflows: Fundamentals and Simulation. Springer, Berlin (2005)

    Google Scholar 

  28. Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)

  29. Latvala, E.K., Anderson, T.P.: Experimental Determination of Jet Spreading from Supersonic Nozzles at High Altitudes. AEDC-TN-58-98 (ASTIA Document No. AD-208546) (1959)

  30. Latvala, E.K., Anderson, T.P.: Studies of the spreading of rocket exhaust jets at high altitudes. Planet. Space Sci. 4, 77–91 (1961)

    Article  Google Scholar 

  31. Mieussens, L.: Discrete-velocity models and numerical schemes for the Boltzmann–BGK equation in plane and axisymmetric geometries. J. Comput. Phys. 162(2), 429–466 (2000)

    Article  MATH  Google Scholar 

  32. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(12), 12–49 (1988)

  33. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1), 129–155 (2005)

    Article  MATH  Google Scholar 

  34. Pareschi, L., Russo, G.: Efficient Asymptotic Preserving Deterministic Methods for the Boltzmann Equation. Models and Computational Methods for Rarefied Flows, AVT-194 RTO AVT/VKI, Rhode St. Genese, Belgium (2011)

  35. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972). doi:10.1016/0021-9991(72)90065-4. http://www.sciencedirect.com/science/article/pii/0021999172900654

  36. Pieraccini, S., Puppo, G.: Implicit–explicit schemes for BGK kinetic equations. J. Sci. Comput. 32(1), 1–28 (2007)

    Article  MATH  Google Scholar 

  37. Pieraccini, S., Puppo, G.: Microscopically implicit-macroscopically explicit schemes for the BGK equation. J. Comput. Phys. 231, 299–327 (2012)

    Article  MATH  Google Scholar 

  38. Sethian, J.A.: Fast marching methods. SIAM Rev. 41, 199–235 (1999)

    Article  MATH  Google Scholar 

  39. Shapiro, A.: The Dynamics and Thermodynamics of Compressible Fluid Flow. Ronald Press, New York (1953)

    Google Scholar 

  40. Tiwari, S., Klar, A.: An adaptive domain decomposition procedure for Boltzmann and Euler equations. J. Comput. Appl. Math. 90, 223–237 (1998)

    Article  MATH  Google Scholar 

  41. Xu, K., Huang, J.C.: A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 229(20), 7747–7764 (2010)

    Article  MATH  Google Scholar 

  42. Yang, G., Causon, D., Ingram, D., Saunders, R., Batten, P.: A Cartesian cut cell method for compressible flows. Part A. Static body problems. Aeronaut. J. 101, 47–56 (1997)

Download references

Acknowledgments

Experiments presented in this paper were carried out using the PlaFRIM experimental testbed, being developed under the Inria PlaFRIM development action with support from LABRI and IMB and other entities: Conseil Régional d’Aquitaine, FeDER, Université de Bordeaux and CNRS (see https://plafrim.bordeaux.inria.fr/). This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the “Investments for the future” Programme IdEx Bordeaux (ANR-10-IDEX-03-02), Cluster of excellence CPU. Gabriella PUPPO acknowledges the contribution of PRIN Project 2009, No, 2009588FHJ_002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Bernard.

Appendix

Appendix

We present the Newton–Raphson algorithm to compute the discrete Maxwellian distribution function. The first three moments of the distribution functions are known and we define the collision invariant \(\mathbf{m }(\varvec{\xi })=(1,\varvec{\xi },\frac{1}{2}|\varvec{\xi }|^{2})^{T}\). The Maxwellian distribution function \(M_{f}\) is computed such that, with the given quadrature rule:

$$\begin{aligned} \langle M_{f},\mathbf{m }(\varvec{\xi }) \rangle =\left( \begin{array}{c} \rho \\ \rho \mathbf{U }\\ E \end{array}\right) \end{aligned}$$

where \((\rho ,\rho \mathbf{U },E)=\langle f,\mathbf{m }(f)\rangle \), that is the moments are computed from \(f\) approximately, using the given quadrature rule.

We are looking for \(M_{f}\) under the form: \(M_{f}=\text{ exp }(\varvec{\alpha }\cdot \mathbf{m }(\varvec{\xi }))\). Let us define the function:

$$\begin{aligned} \mathbf{F }(\varvec{\alpha })=\langle \text{ exp }(\varvec{\alpha }\cdot \mathbf{m }(\varvec{\xi })),\mathbf{m }(\varvec{\xi })\rangle -\underline{\varvec{\rho }} \end{aligned}$$

with \(\underline{\varvec{\rho }}=(\rho ,\mathbf{U },E)^{T}\), the macroscopic variables computed from the moments of \(f\). The discrete Maxwellian verifies \(\mathbf{F }(\varvec{\alpha })=0\). Thus, the problem of computing the discrete Maxwellian reduces to find \(\varvec{\alpha }\) such that \(\mathbf{F }(\varvec{\alpha })=0\). This is done with a Newton–Raphson algorithm. The initial value of \(\varvec{\alpha }\) corresponds to the continuous Maxwellian:

$$\begin{aligned} \varvec{\alpha }_{c}=\Big (\text{ ln }\left( {\displaystyle {\rho \over (2\pi T)^{N/2}}}\right) -{\displaystyle {|\mathbf{U }|^{2} \over 2T}},{\displaystyle {\mathbf{U } \over T}},-{\displaystyle {1 \over T}}\Big ) \end{aligned}$$

The algorithm is summarized as follows:

figure a

In the case of the reduced models, the algorithm is identical but the function \(\mathbf{F }\) is defined as:

$$\begin{aligned} \mathbf{F }(\varvec{\alpha })&= \langle \widetilde{M_{\phi }},\mathbf{m }_{1}(\varvec{\xi })\rangle + \langle \widetilde{M_{\psi }}, \mathbf{e }_{3}\rangle - \langle f, \mathbf{m }_{1}(\varvec{\xi })\rangle \quad \text{ in } \text{1D }\\ \mathbf{F }(\varvec{\alpha })&= \langle \widetilde{M_{\phi }},\mathbf{m }_{2}(\varvec{\xi })\rangle + \langle \widetilde{M_{\psi }}, \mathbf{e }_{4}\rangle - \langle f, \mathbf{m }_{2}(\varvec{\xi })\rangle \quad \text{ in } \text{2D } \end{aligned}$$

where \(\mathbf{e }_{3}=(0,0,1)^{T},\,\mathbf{e }_{4}=(0,0,0,1)^{T},\,\mathbf{m }_{1}(\varvec{\xi })=(1,\xi _{u},\frac{1}{2}|\xi _{u}|^{2})^{T},\,\mathbf{m }_{2}(\varvec{\xi })=(1,\xi _{u},\xi _{v},\frac{1}{2}(\xi _{u}^{2}+\xi _{v}^{2}))^{T}\). And:

$$\begin{aligned} \varvec{\alpha }_{c}&= \Big (\text{ ln }({\displaystyle {\rho \over \sqrt{2\pi T}}})-{\displaystyle {u^{2} \over 2T}},{\displaystyle {u \over T}},-{\displaystyle {1 \over T}}\Big )^{T}\quad \text{ in } \text{1D }\\ \varvec{\alpha }_{c}&= \Big (\text{ ln }({\displaystyle {\rho \over 2\pi T}})-{\displaystyle {u^{2}+v^{2} \over 2T}},{\displaystyle {u \over T}},{\displaystyle {v \over T}},-{\displaystyle {1 \over T}}\Big )^{T}\quad \text{ in } \text{2D } \end{aligned}$$

The Newton–Raphson algorithm give the expression of \(\widetilde{M_{\phi }}\). \(\widetilde{M_{\psi }}\) is then easily computed with the formula:

$$\begin{aligned} \widetilde{M_{\psi }}={\displaystyle {(N-d)T \over 2}}\widetilde{M_{\phi }} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, F., Iollo, A. & Puppo, G. Accurate Asymptotic Preserving Boundary Conditions for Kinetic Equations on Cartesian Grids. J Sci Comput 65, 735–766 (2015). https://doi.org/10.1007/s10915-015-9984-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-9984-8

Keywords

Navigation