Skip to main content
Log in

Simulation of SPDEs for Excitable Media Using Finite Elements

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we address the question of the discretization of stochastic partial differential equations (SPDEs) for excitable media. Working with SPDEs driven by colored noise, we consider a numerical scheme based on finite differences in time (Euler–Maruyama) and finite elements in space. Motivated by biological considerations, we study numerically the emergence of reentrant patterns in excitable systems such as the Barkley or Mitchell–Schaeffer models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allen, E., Novosel, S., Zhang, Z.: Finite element and difference approximation of some linear stochastic partial differential equations. Stoch. Int. J. Probab. Stoch. Proc. 64(1–2), 117–142 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuska, I., Szabo, B., Katz, I.: The p-version of the finite element method. SIAM J. Numer. Anal. 18(3), 515–545 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barkley, D.: A model for fast computer simulation of waves in excitable media. Phys. D Nonlinear Phenom. 49(1–2), 61–70 (1991)

    Article  Google Scholar 

  4. Barkley, D.: Linear stability analysis of rotating spiral waves in excitable media. Phys. Rev. Lett. 68(13), 2090–2093 (1992)

    Article  Google Scholar 

  5. Barkley, D.: Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett. 72(1), 164–167 (1994)

    Article  Google Scholar 

  6. Barkley, D., Kness, M., Tuckerman, L.: Spiral-wave dynamics in a simple model of excitable media: the transition from simple to compound rotation. Phys. Rev. A 42(4), 2489–2492 (1990)

    Article  MathSciNet  Google Scholar 

  7. Berglund, N., Gentz, B.: Noise-Induced Phenomena in Slow–Fast Dynamical Systems: A Sample-Paths Approach, vol. 246. Springer, Berlin (2006)

    Google Scholar 

  8. Bonaccorsi, S., Mastrogiacomo, E.: Analysis of the stochastic Fitzhugh–Nagumo system. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11(3), 427–446 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boulakia, M., Cazeau, S., Fernández, M., Gerbeau, J.F., Zemzemi, N.: Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng. 38(3), 1071–1097 (2010)

    Article  Google Scholar 

  10. Bréhier, C.E.: Strong and weak order in averaging for SPDEs. Stoch. Proc. Appl. 122(7), 2553–2593 (2012)

    Article  MATH  Google Scholar 

  11. Cao, Y., Yang, H., Yin, H.: Finite element methods for semilinear elliptic stochastic partial differential equations. Numer. Math. 106, 181–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cerrai, S., Freidlin, M.: Averaging principle for a class of stochastic reaction-diffusion equations. Probab. Theory Relat. Fields 144(1–2), 137–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciarlet, P., Lions, J.: Finite Element Methods, Handbook of Numerical Analysis, vol. 2. Elsevier, Amsterdam (1991)

    Google Scholar 

  14. Da Prato, G.: Kolmogorov Equations for Stochastic PDEs. Birkhäuse,r Basel (2004)

  15. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  16. Debussche, A., Printems, J.: Weak order for the discretization of the stochastic heat equation. Math. Comput. 78(266), 845–863 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. FitzHugh, R.: Mathematical models of excitation and propagation in nerve. In: Schwan, H.P. (ed.) Biological Engineering, chap. 1, pp. 1–85. McGraw–Hill Book Co., New York (1969)

  18. Goudenège, L., Martin, D., Vial, G.: High order finite element calculations for the Cahn–Hilliard equation. J. Sci. Comput. 52(2), 294–321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hairer, M., Ryser, M., Weber, H.: Triviality of the 2d stochastic Allen–Cahn equation. Electron. J. Probab. 17(39), 1–14 (2012)

    MathSciNet  Google Scholar 

  20. Hecht, F., Le Hyaric, A., Ohtsuka, K., Pironneau, O.: Freefem++, finite elements software

  21. Hinch, R.: An analytical study of the physiology and pathology of the propagation of cardiac action potentials. Prog. Biophys. Mol. Biol. 78(1), 45–81 (2002)

    Article  Google Scholar 

  22. Hodgkin, A., Huxley, A.: Propagation of electrical signals along giant nerve fibres. Proc. R. Soc. Lond. 140(899), 177–183 (1952)

    Article  Google Scholar 

  23. Jentzen, A.: Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients. Potential Anal. 31(4), 375–404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jentzen, A., Röckner, M.: A Milstein scheme for SPDEs. arXiv preprint arXiv:1001.2751 (2012)

  25. Jordan, P., Christini, D.: Cardiac Arrhythmia. Wiley, London (2006)

    Book  Google Scholar 

  26. Keener, J.: Waves in excitable media. J. Appl. Math. 39(3), 528–548 (1980)

    MathSciNet  MATH  Google Scholar 

  27. Kovács, M., Larsson, S., Lindgren, F.: Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise. Numer. Algorithms 53(2–3), 309–320 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kruse, R.: Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise. IMA J. Numer. Anal. 34(1), 217–251 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kruse, R., Larsson, S.: Optimal regularity for semilinear stochastic partial differential equations with multiplicative noise. Electron. J. Probab. 17(65), 1–19 (2012)

    MathSciNet  Google Scholar 

  30. Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392(6), 321–424 (2004)

    Article  Google Scholar 

  31. Lord, G., Tambue, A.: A modified semi-implict Euler–Maruyama scheme for finite element discretization of SPDEs. arXiv preprint arXiv:1004.1998 (2010)

  32. Lord, G., Tambue, A.: Stochastic exponential integrators for finite element discretization of SPDEs for multiplicative and additive noise. IMA J. Numer. Anal. 33(2), 515–543 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lord, G., Thümmler, V.: Computing stochastic traveling waves. SIAM J. Sci. Comput. 34(1), 24–43 (2012)

    Article  Google Scholar 

  34. Mitchell, C., Schaeffer, D.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65(5), 767–793 (2003)

    Article  Google Scholar 

  35. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  36. Raviart, P., Thomas, J.: Introduction à l’analyse numérique des équations aux dérivées partielles. Masson (1983)

  37. Shardlow, T.: Numerical simulation of stochastic PDEs for excitable media. J. Comput. Appl. Math. 175(2), 429–446 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tuckwell, H., Jost, J.: Weak noise in neurons may powerfully inhibit the generation of repetitive spiking but not its propagation. PLoS Comput. Biol. 6(5) 1–13 (2010)

  39. Wagner, D.: Survey of measurable selection theorems: an update. Lecture Notes in Mathematics, vol. 794. Springer, Berlin (1980)

  40. Walsh, J.: Finite element methods for parabolic stochastic PDEs. Potential Anal. 23(1), 1–43 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, W., Roberts, A.: Average and deviation for slow–fast stochastic partial differential equations. J. Differ. Equ. 253(5), 1265–1286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yan, Y.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numeric. Anal. 43(4), 1363–1384 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewer for his/her valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Genadot.

Additional information

This work was supported by the Agence Nationale de la Recherche through the project MANDy, Mathematical Analysis of Neuronal Dynamics, ANR-09-BLAN-0008-01.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Recall that the domain \(D\) is polyhedral such that

$$\begin{aligned} \overline{D}=\bigcup _{T\in {\fancyscript{T}}_h}T. \end{aligned}$$

Let \(i\in \{0,0_a,1\}\). The process \((D_h(t),~t\in [0,\tau ])\) defined by

$$\begin{aligned} D_h(t)=W^Q_t-W^{Q,h,i}_t \end{aligned}$$

is a centered Wiener process. In particular, it is a continuous martingale and thus, by the Burkholder–Davis–Gundy inequality (see Theorem 3.4.9 of [35]) we have

$$\begin{aligned} \mathbb {E}\left( \sup _{t\in [0,\tau ]}\Vert D_h(t)\Vert ^2\right) \le c_2\mathbb {E}\left( \Vert D_h(\tau )\Vert ^2\right) \end{aligned}$$

with \(c_2\) a constant which does not depend on \(h\) or \(\tau \). We begin with the case \(i=1\). Since the processes \(W^Q\) and \(W^{Q,h,1}\) are regular in space, we write

$$\begin{aligned} \mathbb {E}\left( \Vert D_h(\tau )\Vert ^2\right) =\mathbb {E}\left( \int _D\left( W^Q_\tau (x)-W^{Q,h,1}_\tau (x)\right) ^2\mathrm{d}x\right) . \end{aligned}$$

We use the definition of \(W^{Q,h,1}\) in Definition 3 and the fact that \(\sum _{i=1}^{N_h}\psi _i=1\) to obtain

$$\begin{aligned} \mathbb {E}\left( \Vert D_h(\tau )\Vert ^2\right)&= \mathbb {E}\left( \int _D\left( W^Q_\tau (x)-\sum _{i=1}^{N_h}W^Q_\tau (P_i)\psi _i(x)\right) ^2\mathrm{d}x\right) \\&= \mathbb {E}\left( \int _D\left( \sum _{i=1}^{N_h}\left( W^Q_\tau (x)-W^Q_\tau (P_i)\right) \psi _i(x)\right) ^2\mathrm{d}x\right) \\&= \mathbb {E}\left( \int _D\sum _{i,j=1}^{N_h}\left( W^Q_\tau (x){-}W^Q_\tau (P_i)\right) \left( W^Q_\tau (x){-}W^Q_\tau (P_j)\right) \psi _i(x)\psi _{j}(x)\mathrm{d}x\right) . \end{aligned}$$

By an application of Fubini’s theorem, exchanging over the expectation, integral and summation, we get

$$\begin{aligned} \mathbb {E}\left( \Vert D_h(\tau )\Vert ^2\right)&= \sum _{i,j=1}^{N_h}\int _D\mathbb {E}\left( \left( W^Q_\tau (x)-W^Q_\tau (P_i)\right) \left( W^Q_\tau (x)-W^Q_\tau (P_j)\right) \right) \psi _i(x)\psi _{j}(x)\mathrm{d}x\\&= \tau \sum _{i,j=1}^{N_h}\int _D\left( C(0){-}C(P_i-x){-}C(P_j-x){+}C(P_i-P_j)\right) \psi _i(x)\psi _{j}(x)\mathrm{d}x. \end{aligned}$$

For all \(1\le i,j\le N_h\), if the intersection of the supports of \(\psi _i\) and \(\psi _j\) is not empty, then

$$\begin{aligned} \forall x\in \text {supp} \psi _i,\quad \forall y\in \text {supp}\psi _j, |x-y|\le K h. \end{aligned}$$

Thus, there exists \(K>0\) such that, for all \(i,j\), if \(\text {supp} \psi _i\cap \text {supp} \psi _{j}\ne \emptyset \) and \(x\in \text {supp} \psi _i\cap \text {supp} \psi _{j}\), a Taylor’s expansion yields

$$\begin{aligned} |C(0)-C(P_i-x)-C(P_j-x)+C(P_i-P_j)|\le K\max _{x\in \overline{D}}\Vert \mathrm{Hess}~C(x)\Vert h^2, \end{aligned}$$

where we have used the fact that \(\nabla C(0)=0\). Then,

$$\begin{aligned} \mathbb {E}\left( \Vert D_h(\tau )\Vert ^2\right) \le K\tau \max _{x\in \overline{D}}\Vert \mathrm{Hess}~C(x)\Vert h^2. \end{aligned}$$

This ends the proof for the case \(i=1\). The case \(i=0\) can be treated similarly.

For the case \(i=0_a\), we proceed as follows. The process \(W^{Q,h,0_a}\) is the orthonormal projection of \(W^Q\) on the space P0, thus, we have, using the Pythagorean theorem,

$$\begin{aligned} \mathbb {E}\left( \Vert D_h(\tau )\Vert ^2\right) =\mathbb {E}\left( \left\| W^Q_\tau -W^{Q,h,0_a}_\tau \right\| ^2\right) =\mathbb {E}\left( \left\| W^Q_\tau \right\| ^2-\left\| W^{Q,h,0_a}_\tau \right\| ^2\right) . \end{aligned}$$

Then, recalling that the processes \(W^Q\) and \(W^{Q,h,0_a}\) are regular in space and using the fact that the triangles \(T\in {\fancyscript{T}}_h\) do not intersect, we obtain,

$$\begin{aligned} \mathbb {E}\left( \Vert D_h(\tau )\Vert ^2\right)&=\mathbb {E}\left( \int _DW^Q_\tau (x)^2\mathrm{d} x-\sum _{T\in {\fancyscript{T}}_h}\frac{1}{|T|}(W^Q_\tau ,1_T)^2\right) . \end{aligned}$$

By an application of Fubini’s theorem, exchanging over the expectation and summation, we get

$$\begin{aligned} \mathbb {E}\left( \Vert D_h(\tau )\Vert ^2\right) =\tau \left( C(0)|D|-\sum _{T\in {\fancyscript{T}}_h}\frac{1}{|T|}(Q1_T,1_T)\right) . \end{aligned}$$
(28)

Since \(\overline{D}=\bigcup _{T\in {\fancyscript{T}}_h}T\) we have

$$\begin{aligned} C(0)|D|=\sum _{T\in {\fancyscript{T}}_h}\frac{1}{|T|}\int _T\int _TC(0)\mathrm{d}z_1\mathrm{d}z_2, \end{aligned}$$

hence, plugging in (28)

$$\begin{aligned} \mathbb {E}\left( \Vert D_h(\tau )\Vert ^2\right) =\tau \sum _{T\in {\fancyscript{T}}_h}\frac{1}{|T|}\int _T\int _T[C(0)-C(z_1-z_2)]\mathrm{d}z_1\mathrm{d}z_2. \end{aligned}$$
(29)

Thanks to the fact that \(\nabla C=0\), a Taylor’s expansion yields

$$\begin{aligned} C(0)-C(z_1-z_2)=(z_1-z_2)\cdot \mathrm{Hess}~C(0)(z_1-z_2)+\mathrm{o}(|z_1-z_2|^2). \end{aligned}$$
(30)

Thus, thanks to (2), for all \(z_1,z_2\) in the same triangle \(T\)

$$\begin{aligned} |C(0)-C(z_1-z_2)|\le K\max _{x\in \overline{D}}\Vert \mathrm{Hess}~C(x)\Vert h^2, \end{aligned}$$

where the constant \(K\) is independent from \(T\in {\fancyscript{T}}_h\). Plugging in (29) yields

$$\begin{aligned} \mathbb {E}\left( \Vert D_h(\tau )\Vert ^2\right) \le K\max _{x\in \overline{D}}\Vert \mathrm{Hess}~C(x)\Vert \tau h^2 \end{aligned}$$

for a deterministic constant \(K\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulakia , M., Genadot, A. & Thieullen, M. Simulation of SPDEs for Excitable Media Using Finite Elements. J Sci Comput 65, 171–195 (2015). https://doi.org/10.1007/s10915-014-9960-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9960-8

Keywords

Mathematics Subject Classification

Navigation